欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2025, Vol. 30 ›› Issue (2): 200-208.doi: 10.12092/j.issn.1009-2501.2025.02.006

• 消化系统肿瘤靶向治疗进展及前沿专栏 • 上一篇    下一篇

机器学习算法在抗肿瘤药物响应预测中的应用研究

谈妍辰1,王文文2,夏结来2,李晨2   

  1. 1空军军医大学基础医学院学员五大队十七队,西安  710032,陕西;2空军军医大学军事预防医学系军队卫生统计学教研室,特殊作业环境危害评估与防治教育部重点实验室,西安  710032,陕西

  • 收稿日期:2024-06-05 修回日期:2024-10-08 出版日期:2025-02-26 发布日期:2025-02-05
  • 通讯作者: 李晨,女,博士,副教授,硕士生导师,研究方向:生物统计学,临床试验设计与分析。 E-mail: lcbiosta@fmmu.edu.cn
  • 作者简介:谈妍辰,女,研究方向:航空航天临床医学。 E-mail: 1312265659@qq.com
  • 基金资助:
    国家自然科学基金面上项目(82273728;82373680)

Research on the application of machine learning algorithms in anticancer drug response prediction

TAN Yanchen1, WANG Wenwen2, XIA Jielai2, LI Chen2   

  1. 1 17th Team of the 5th Brigade of Basic Medical College Students, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China; 2 Department of Health Statistics, School of Preventive Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, Shaanxi, China 
  • Received:2024-06-05 Revised:2024-10-08 Online:2025-02-26 Published:2025-02-05

摘要:

随着药物基因组学和精准医学的不断发展,针对生物标记物的靶向治疗和免疫疗法开创了抗肿瘤治疗的新时代。由于肿瘤细胞的异质性和肿瘤微环境的多变性,即使在具有相同生物标记物富集的患者群体中,对于同一药物的反应仍存在显著差异。通过将多组学数据与药物敏感性分析整合的算法,可以预测抗肿瘤药物的反应,进而将其转化成符合个体化医疗需求的诊疗方案,从而有望提高抗肿瘤药物在临床治疗中的效果。机器学习是目前常用的抗肿瘤药物响应预测建模算法之一。然而,由于输入数据和算法构建方法的差异,对该领域尚缺乏较全面的文献综述。因此,本文对抗肿瘤药物响应预测机器学习算法进行综述,总结公开可用的药物基因组数据集、机器学习算法和在药物响应预测中的评价指标以及在临床应用中所面临的现状和挑战,以期为机器学习算法在药物响应预测领域的主要研究问题和潜在解决方案提供方法学上的参考。

关键词: 机器学习, 药物响应预测, 监督学习, 精准医疗, 神经网络

Abstract:

With the continuous development of genomics and precision medicine, targeted therapy and immunotherapy targeting biomarkers have ushered in a new era of anti-tumor therapy. However, due to the heterogeneity of tumor cells and the variability of tumor microenvironment, there are still significant differences in response to the same drug even in patient populations with the same biomarker enrichment. By combining omics data with drug sensitivity algorithms, the response of anti-tumor drugs can be predicted and transformed into personalized diagnosis and treatment strategies required for precision medicine, which is expected to improve the effectiveness of anti-tumor drugs in clinical treatment. Currently, machine learning is one of the commonly used modeling algorithms for predicting the response of anti-tumor drugs. However, due to differences in input data and algorithm construction methods, there is currently a lack of comprehensive literature review in this field. Therefore, this article provides a review of machine learning algorithms for predicting anti-tumor drug responses, summarizing publicly available cell genome characterization datasets, machine learning algorithms, and evaluation indicators in drug response prediction, as well as the current situation and challenges faced in clinical applications, in order to provide methodological references for the main research problems and potential solutions of machine learning algorithms in the field of drug response prediction.

Key words: machine learning, drug response prediction, supervised learning, precision medicine, neural network

中图分类号: