[1]Zhang G, Chen H, Chen W, et al. Prevalence and risk factors for diabetic retinopathy in China: a multi-hospital-based cross-sectional study[J]. Brit J Ophthalmol, 2017, 101(12): 1591-1595.
[2]Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review [J]. Clin Exp Ophthalmol, 2016, 44(4): 260-277.
[3]Wang SY, Andrews CA, Herman WH, et al. Incidence and risk factors for developing diabetic retinopathy among youths with type 1 or type 2 diabetes throughout the united states[J]. Ophthalmol, 2017, 124(4): 424-430.
[4]Jm LDF, Duarte DA, Montemurro C, et al. Defective autophagy in diabetic retinopathy [J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4356-4366.
[5]Rosa MD, Distefano G, Gagliano C, et al. Autophagy in diabetic retinopathy[J]. Curr Neuropharmacol, 2016, 14(8): 810-825.
[6]Gambhir D, Ananth S, Veeranankarmegam R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy GPR109A as an anti-inflammatory receptor[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2208-2217.
[7]Kumar B, Gupta SK, Saxena R, et al. Current trends in the pharmacotherapy of diabetic retinopathy [J]. J Postgrad Med, 2016, 58(2): 132-139.
[8]Tsai FJ, Li TM, Ko CH, et al. Effects of Chinese herbal medicines on the occurrence of diabetic retinopathy in type 2 diabetes patients and protection of ARPE-19 retina cells by inhibiting oxidative stress [J]. Oncotarget, 2017, 8(38): 63528-63550.
[9]洪海都, 温俊茂, 陈宗俊. 黄芪主要活性成分的药理作用研究进展[J]. 世界最新医学信息文摘, 2016, 16(14): 49-50.
[10]武超. 黄芪皂苷Ⅱ通过调控HMGB1-PI3K/AKT/mTOR-溶酶体功能增加顺铂诱导的人肝癌细胞凋亡[D]. 安徽医科大学, 2016.
[11]江红, 杨玉芝, 段滨红, 等. 黄芪对糖尿病视网膜病变患者氧化应激水平的影响[J]. 黑龙江医学, 2011, 24(6): 960-962.
[12]陈威, 高晶, 朱晖, 等. 螺内酯联合30%剂量维替泊芬光动力疗法治疗慢性中心性浆液性脉络膜视网膜病变[J]. 医药导报, 2018, 37(10): 1220-1223.
[13]Yan ZP, Ma JX. Risk factors for diabetic retinopathy in northern Chinese patients with type 2 diabetes mellitus [J]. Int J Ophthalmol, 2016, 9(8): 1194-1199.
[14]Zhan J, He J, Zhou Y, et al. Crosstalk between the autophagy-lysosome pathway and the ubiquitin-proteasome pathway in retinal pigment epithelial cells [J]. Curr Mol Med, 2016, 16(5): 487-495.
[15]乔铁,梁可,马进. 黄芪皂苷对化疗贫血小鼠骨髓细胞c-Kit、SHP2、c-MPL等细胞因子的影响[J]. 中华中医药学刊, 2016, 34(12): 3005-3007.
[16]Zhou Y, Tong X, Ren S, et al. Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation[J]. J Ethnopharmacol, 2016, 190: 83-90.
[17]王毅. 黄芪皂苷甲调控内质网应激和自噬改善糖尿病肾病的机制研究[D]. 上海中医药大学, 2017.
[18]Masuda GO, Yashiro M, Kitayama K, et al. Clinicopathological correlations of autophagy-related proteins LC3, Beclin 1 and p62 in gastric cancer[J]. Anticancer Res, 2016, 36(1): 129.
[19]Sánchez-Chávez G, Hernández-Ramírez E, Osorio-Paz I, et al. Potential role of endoplasmic reticulum stress in pathogenesis of diabetic retinopathy [J]. Neurochemical Res, 2015, 41(5): 1-9.
[20]Yan S, Zheng C, Chen ZQ, et al. Expression of endoplasmic reticulum stress-related factors in the retinas of diabetic rats [J]. Exp Diab Res, 2016, 2012(3/4): 743780.
[21]Yang X, Srivastava R, Howell SH, et al. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress [J]. Plant J, 2016, 85(1): 83-95.
[22]Storniolo A, Alfano V, Carbotta S, et al. IRE1α deficiency promotes tumor cell death and eIF2α degradation through PERK dipendent autophagy [J]. Cell Death Disc, 2018, 4: 3.
[23]Moon HS, Kim B, Gwak H, et al. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis[J]. Mol Carcin, 2016, 55(4): 346-356.
[24]Wang J, Huang S, Tian R, et al. The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK [J]. Oncotarget, 2018, 9(18): 14413-14427.
[25]张达, 李姝玉, 王岩飞, 等. 黄芪与葛根素联用对KKA小鼠肾脏内质网应激相关PERK通路的影响[J]. 中国病理生理杂志, 2017, 33(1): 166-169. |