欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2025, Vol. 30 ›› Issue (7): 942-949.doi: 10.12092/j.issn.1009-2501.2025.07.009

• 定量药理学 • 上一篇    下一篇

基于主层策略的贝叶斯混合模型在临床试验中的应用

吴怡雯1,孙悦1,卢子璇1,潘嘉禾2,郁尔1,沃红梅2,唐少文3,赵杨1,戴俊程3,易洪刚1   

  1. 1南京医科大学公共卫生学院生物统计学系,南京  211166,江苏;2南京医科大学医政学院社会保障系,南京  211166,江苏;3南京医科大学公共卫生学院流行病学系,南京  211166,江苏

  • 收稿日期:2025-02-24 修回日期:2025-05-15 出版日期:2025-07-26 发布日期:2025-07-02
  • 通讯作者: 易洪刚,男,博士,副教授,研究方向:遗传流行病学中的统计理论方法与应用、临床试验中的统计理论与方法。 E-mail: honggangyi@njmu.edu.cn
  • 作者简介:吴怡雯,女,在读硕士研究生,研究方向:临床试验统计设计研究。 E-mail: wyyyiwen@163.com
  • 基金资助:
    国家级大学生创新创业训练计划(202310312020Z);江苏省高等学校大学生创新训练计划(202410312175Y);江苏高校优势学科建设工程资助项目(应用统计学);江苏省品牌专业建设工程资助项目

Application of the Bayesian mixture model based on a principal stratum strategy in clinical trials

WU Yiwen1, SUN Yue1, LU Zixuan1, PAN Jiahe2, YU Er1, WO Hongmei2, TANG Shaowen3, ZHAO Yang1, DAI Juncheng1, YI Honggang1   

  1. 1 Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; 2 Department of Social Security, School of Health Policy and Management, Nanjing Medical University, Nanjing 211166, Jiangsu, China; 3 Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China 
  • Received:2025-02-24 Revised:2025-05-15 Online:2025-07-26 Published:2025-07-02

摘要: 目的:评价基于主层策略的贝叶斯混合模型在临床试验出现不依从伴发事件时进行主层因果效应(CACE)的应用效果。方法:以某新药治疗原发性2型糖尿病临床试验为例(非劣效界值-0.4),主分析采用在单调性假设下的贝叶斯混合模型,在依从层中对糖化血红蛋白变化值的组间差异进行平均因果效应估计,并进行非劣效性检验。敏感性分析包括弱化单调性假设的贝叶斯混合模型及引入符合方案集(per-protocol set,PPS)分析进行对比。结果:主分析中依从层的糖化血红蛋白主层因果效应估计的后验均值为0.081%,单侧97.5%可信区间下限为-0.124%,高于非劣效界值,支持新药在依从人群中疗效非劣效(P(H1|Data)=1)。敏感性分析显示,逐步弱化单调性假设时,主层因果效应依旧保持稳定,表明研究结论在该假设下具有一定稳健性;PPS分析结果(估计值0.136,单侧97.5%可信区间下限-0.069)与主层策略下的结论一致,进一步验证了其稳健性。结论:在存在不依从伴发事件的临床试验中,基于主层策略的贝叶斯混合模型可有效校正依从性偏倚,提供保守且稳健的主层因果效应估计,为复杂依从情境下的疗效评估提供方法学支持。

关键词: 贝叶斯统计, 混合模型, 主层策略, 非劣效试验, 非依从性

Abstract:

AIM: To evaluate the application effectiveness of a Bayesian mixture model based on the principal stratum strategy for estimating the complier average causal effect (CACE) in clinical trials with non-compliance. METHODS: Using a non-inferiority randomized controlled trial investigating a novel drug for primary type 2 diabetes mellitus (non-inferiority margin: -0.4) as a case study, the primary analysis applied a Bayesian mixture model under the monotonicity assumption to estimate CACE of between-group differences in glycated hemoglobin (HbA1c) changes within the compliant stratum, followed by non-inferiority testing. Sensitivity analyses included a Bayesian mixture model relaxing the monotonicity assumption and comparing results with per-protocol set (PPS) analysis. RESULTS: In the primary analysis, the posterior mean of CACE for HbA1c change in the compliant stratum was 0.081%, with a one-sided 97.5% credible interval lower bound of -0.124, exceeding the non-inferiority margin (-0.4%), supporting the non-inferiority efficacy of the novel drug in the compliant stratum (P(H1|Data) = 1). Consistent findings were observed in PPS analyses (estimated effect: 0.136%; one-sided 97.5% credible interval lower bound: -0.069%), further validating methodological robustness. CONCLUSION: In clinical trials with noncompliance as an intercurrent event, the Bayesian mixture model under the principal stratum strategy effectively adjusts for compliance-related bias and yields conservative, robust estimates of causal effects, supporting its value in efficacy evaluation under complex compliance scenarios.

Key words: Bayesian statistics, Mixture models, Principal stratum strategy, Non-inferiority trials, Noncompliance

中图分类号: