[1] Kirpichnikov D,McFarlane SI,Sowers JR. Metformin: an update[J].Arm Intern Med, 2002, 137(1): 25-33. [2] 方丽娟, 刘乃丰. 甲双胍的心血管保护作用[J]. 中国临床药理学与治疗学, 2011, 16(2): 232-236. [3] Wiernsperger NF.Metformin: intrinsic vasculorotective properties[J]. Diabetes Technol The, 2000, 2(2):259-272. [4] 赵丹,修锐. 二甲双胍临床应用研究概述[J]. 药物流行病学杂志, 2010, 19(3):164-166. [5] Cortizo AM, Sedlinsky C, McCarthy AD, et al. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture[J]. Eur J Pharmacol, 2006, 536(1-2):38-46. [6] 吕娇, 刘洪臣, 鄂玲玲, 等. 盐酸二甲双胍对大鼠下颌骨成骨细胞增殖、分化及矿化功能的影响[J]. 中华老年口腔医学杂志, 2008, 6(1):48-50. [7] 吕娇, 刘洪臣, 王东胜, 等. 二甲双胍对成骨细胞葡萄糖摄取及葡萄糖转运蛋白-1表达的影响[J]. 口腔颌面修复学杂志, 2008, 9(2):56-89. [8] Donghu Z, Yirong C, Xulei T.Metformin reverses the deleterious effects of high glucose on osteoblast function[J]. J Diabetes Complicat, 2010, 24(5):334-344. [9] Terada M, Inaba M, Yano Y, et al.Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells[J]. Bone, 1998, 22(1):17-23. [10] Gopalakrishnan V, Vignesh RC, Arunakaran J, et al.Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages[J]. Biochem Cell Biol, 2006, 84(1):93-101. [11] Maor G, Karnieli E.The insulin-sensitive glucose transporter (GLUT4)is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor[J]. Endocrinology, 1999, 140(4):1841-1851. [12] Al-Khalili L, Forsgren M, Kannisto K, et al.Enhanced insulin-stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal proliferator activator receptor gamma co-activator 1[J]. Diabetologia, 2005, 48(1):1173-1179. [13] Tessier D, Maheux P, Khalil A, et al.Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes[J]. Metabolism, 1999, 48(7):897-903. [14] Ruggiero-Lopez D, Lecomte M, Moinet G, et al.Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end products formation[J]. Biochem Pharmacol, 1999, 58(11):1765-1773. [15] Yan SD, Schmidt AM, Anderson GM, et al.Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins[J]. J Biol Chem, 1994, 269(13):9889-9897. [16] Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-Products (AGEs) on osteoblastic Cells[J]. Exp Clin Endocrinol Diabetes, 2008, 116(6):333-340. [17] Burdon T, Smith A, Savatier P, et al.Signaling, cell cycle and pluripotency in embryonic stem cells[J]. Trends Cell Biol, 2002, 12(9):432-438. [18] Lai CF, Chaudhary A, Fausto L, et al.Erk is essential for growth differentiation integrin expression and cell function in human osteoblastic cells[J]. J Biol Chem, 2001, 276(17):14443-14450. [19] Shah M, Kola B, Bataveljic A, et al.AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass[J]. Bone, 2010, 47(2):309-319. [20] Adams J, Chen ZP, Van Denderen.Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site[J]. Protein Sci, 2004, 13(1):155-165. [21] Kanazawa I, Yamaguchi T, Yano S, et al.Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells[J]. BMC Cell Biol, 2007, 8:51-62. [22] Kanazawa I, Yamaguchi T, Yano S, et al.Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP2 expression[J]. Am J Physiol Endocrinol Metab, 2009, 296(1):E139-146. [23] Ippei K, Toru Y, Shozo Y, et al.Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression[J]. Biochem Bioph Res Co, 2008, 375(3):414-419. [24] Won GJ, Eun JK, Kkot-Nim L, et al.AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells[J]. Biochem Bioph Res Co, 2011, 404(4):1004-1009. [25] Seol W, Choi HS, Moore DD.An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors[J]. Science, 1996, 272(5266):1336-1339. [26] Lee YS, Chanda D, Sim J, et al.Structure and function of the atypical orphan nuclear receptor small heterodimer partner[J]. Int Rev Cytol, 2007, 261:117-158. [27] Kim YD, Park KG, Lee YS, et al.Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP[J]. Diabetes, 2008, 57(2):306-314. [28] Chanda D, Li T, Song KH, et al.Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes[J]. J Biol Chem, 2009, 284(42):28510-28521. [29] Jeong BC, Lee YS, Bae IH, et al.The orphan nuclear receptor SHP is a positive regulator of osteoblastic bone formation[J]. J Bone Miner Res, 2010, 25(2):262-274. [30] Won GJ, Eun JK, In-Ho B, et al.Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2[J]. Bone, 2011, 48(4):885-893. [31] Takayuki K, KenJiro B, Hiraku S, et al. Osteoblast differentiation Is functionally associated with decreased AMP kinase activity[J]. J Cell Physiol, 2009, 221(3):740-749. [32] Macsai CE, Foster BK, Xian CJ.Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair[J]. J Cell Physiol, 2008, 215(3):578-587. [33] Strutt D.Frizzled signalling and cell polarisation in Drosophila and vertbrates[J]. Development, 2003, 130(19),4501-4513. [34] Hartmann C.A Wnt canon orchestrating osteoblastogenesis[J]. Trends Cell Biol, 2006, 16(3):151-158. [35] Tomozumi T, Masanori M, Rieko T, et al.AMP-activated protein kinase attenuates Wnt/β-catenin signaling in human osteoblastic Saos-2 cells[J]. Mol Cell Endocrinol, 2011, 339(1/2):114-119. [36] Boyce BF, Xing L.Functions of RANKL/RANK/OPG in bone modeling and remodeling[J]. Arch biochem Biophys, 2008, 473(2):139-146. [37] Sato K, Suematsu A, Nakashima T, et al.Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med, 2006, 12(12):1410-1416. [38] Young-Sun L, Yang-Soon K, Sun-Young L, et al.AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts[J]. Bone, 2010, 47(5):926-937. [39] Baka E, Kima M, Parka H, et al.Effect of metformin on osteoclastogenesis stimulated by bone resorption inducing factors[J]. Bone, 2009, 44(2):S253-S338. [40] Lecka-Czernik B, Moerman EJ, Grant DF, et al.Divergent effects of selective peroxisome proliferators activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation[J]. Endocrinology, 2002, 143(6):2376-2384. [41] Kahn SE, Haffner SM, Heise MA, et al.Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy[J]. New Engl J Med, 2006, 355(23):2427-2443. [42] Komori T.Runx2, a multifunctional transcription factor in skeletal development[J]. J Cell Biochem, 2002, 87(1):1-8. [43] Duque G, Macorittoc M, Kremer R.1,25 (OH)2D3 inhibit bone marrow adipogenesis in senescence accelerated mice(SAM-P/ 6) by decreasing the expression of peroxisome proliferatorsact ivated receptor gamma2 (PPARγ2)[J]. Exp Gerontol, 2004, 39(3):333-338. [44] Ying G, Jing X, Xiaoyu L, et al.Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells[J]. J pharm pharmacol, 2008, 60(12):1695-1700. [45] Molinuevo MS, Schurman L, McCarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vitro and in vivo studies[J]. J Bone Miner Res, 2010, 25(2):211-221. [46] Claudia S, María SM, Ana MC, et al.Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats[J]. Eur J Pharmacol, 2011, 668(3):477-485. [47] Ying G, Yunfeng L, Jing X, et al.Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats[J]. Eur J Pharmacol, 2010, 635(1-3):231-236. [48] Vestergaard P, Rejnmark L, Mosekilde L.Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk[J]. Diabetologia, 2005, 48(7):1292-1299 [49] 张瑞美. 不同剂量二甲双胍对2型糖尿病性骨质疏松症并发骨折恢复的影响[J].青岛医药卫生, 2011, 43(3):197-198. [50] Vestergaard P.Discrepancies in bone mineral density and fracture risk in patients with type1 and type2 diabetes-a meta-analysis[J]. Osteoporos Int, 2007, 18(4):427-444. |