[1] Ghosh G, Wang VY, Huang DB, et al. NF-kappaB regulation: lessons from structures[J]. Immunol Rev, 2012, 246(1): 36-58. [2] Kanarek N, Ben-Neriah Y. Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs[J]. Immunol Rev, 2012, 246(1): 77-94. [3] DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400. [4] Liu YC, Chiang IT, Hsu FT, et al. Using NF-kappaB as a molecular target for theranostics in radiation oncology research[J]. Expert Rev Mol Diagn, 2012, 12(2): 139-146. [5] Hung CM, Garcia-Haro L, Sparks CA, et al. mTOR-dependent cell survival mechanisms[J]. Cold Spring Harb Perspect Biol, 2012, 4(12). [6] Laplante M, Sabatini DM. mTOR Signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(2). [7] Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293. [8] Hou YC, Chiu WC, Yeh CL, et al. Glutamine modulates lipopolysaccharide-induced activation of NF-kappaB via the Akt/mTOR pathway in lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(1): L174-183. [9] Choi YS, Jeong S. PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB[J]. Mol Cells, 2005, 20(2): 241-246. [10] Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells[J]. J Biol Chem, 2002, 277(35): 32124-32132. [11] Zhang WJ, Wei H, Hagen T, et al. Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway[J]. Proc Natl Acad Sci USA, 2007, 104(10): 4077-4082. [12] Vasudevan KM, Gurumurthy S, Rangnekar VM. Suppression of PTEN expression by NF-kappa B prevents apoptosis[J]. Mol Cell Biol, 2004, 24(3): 1007-1021. [13] Ying H, Elpek KG, Vinjamoori A, et al. PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network[J]. Cancer Discov, 2011, 1(2): 158-169. [14] Zhou J, Shang J, Song J, et al. Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-kappaB pathway[J]. Int J Biochem Cell Biol, 2013, 45(2): 308-316. [15] Dan HC, Adli M, Baldwin AS. Regulation of mammalian target of rapamycin activity in PTEN-inactive prostate cancer cells by I kappa B kinase alpha[J]. Cancer Res, 2007, 67(13): 6263-6269. [16] Dan HC, Cooper MJ, Cogswell PC, et al. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK[J]. Genes Dev, 2008, 22(11): 1490-1500. [17] Lee DF, Kuo HP, Chen CT, et al. IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance[J]. Int J Mol Med, 2008, 22(5): 633-638. [18] Ghosh S, Tergaonkar V, Rothlin CV, et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival[J]. Cancer Cell, 2006, 10(3): 215-226. [19] Gomez-Pinillos A, Ferrari AC. mTOR signaling pathway and mTOR inhibitors in cancer therapy[J]. Hematol Oncol Clin North Am, 2012, 26(3): 483-505, vii. [20] Minhajuddin M, Fazal F, Bijli KM, et al. Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells[J]. J Immunol, 2005, 174(9): 5823-5829. [21] Ahmed M, Kundu GC. Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-kappaB dependent AP-1-mediated ICAM-1 expression in breast cancer cells[J]. Mol Cancer, 2010, 9:101. [22] Sun Q, Liu Q, Zheng Y, et al. Rapamycin suppresses TLR4-triggered IL-6 and PGE(2) production of colon cancer cells by inhibiting TLR4 expression and NF-kappaB activation[J]. Mol Immunol, 2008, 45(10): 2929-2936. [23] Lorne E, Zhao X, Zmijewski JW, et al. Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury[J]. Am J Respir Cell Mol Biol, 2009, 41(2): 237-245. [24] Tanaka K, Babic I, Nathanson D, et al. Oncogenic EGFR signaling activates an mTORC2-NF-kappaB pathway that promotes chemotherapy resistance[J]. Cancer Discov, 2011, 1(6): 524-538. [25] Dilly AK, Ekambaram P, Guo Y, et al. Platelet-type 12- lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/AKT/NF-kappaB[J]. Int J Cancer, 2013,133(8):1784-1791. [26] Yen CJ, Izzo JG, Lee DF, et al. Bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in Barrett's-associated esophageal adenocarcinoma[J]. Cancer Res, 2008, 68(8): 2632-2640. [27] Jiang H, Zhu YS, Xu H, et al. Inflammatory stimulation and hypoxia cooperatively activate HIF-1{alpha} in bronchial epithelial cells: involvement of PI3K and NF-{kappa}B[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 298(5): L660-669. [28] Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway[J]. Cell, 2007, 130(3): 440-455. [29] Wang G, Chen C, Yang R, et al. p55PIK-PI3K stimulates angiogenesis in colorectal cancer cell by activating NF-kappaB pathway[J]. Angiogenesis, 2013,16(3):561-573. [30] Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer[J]. Virchows Arch, 2005, 446(5): 475-482. [31] Hussain AR, Ahmed SO, Ahmed M, et al. Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis[J]. PLoS One, 2012, 7(6): e39945. [32] Qiao Q, Jiang Y, Li G. Inhibition of the PI3K/AKT-NF-kappaB Pathway With Curcumin Enhanced Radiation-Induced Apoptosis in Human Burkitt's Lymphoma[J]. J Pharmacol Sci, 2013, 121(4): 247-256. [33] Rogers R, Ouellet G, Brown C, et al. Cross-talk between the Akt and NF-kappaB signaling pathways inhibits MEHP-induced germ cell apoptosis[J]. Toxicol Sci, 2008, 106(2): 497-508. [34] Fahy BN, Schlieman MG, Virudachalam S, et al. Inhibition of AKT abrogates chemotherapy-induced NF-kappaB survival mechanisms: implications for therapy in pancreatic cancer[J]. J Am Coll Surg, 2004, 198(4): 591-599. [35] Chao X, Zao J, Xiao-Yi G, et al. Blocking of PI3K/AKT induces apoptosis by its effect on NF-kappaB activity in gastric carcinoma cell line SGC7901[J]. Biomed Pharmacother, 2010, 64(9): 600-604. [36] Lee KB, Byun HJ, Park SH, et al. CYR61 controls p53 and NF-kappaB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells[J]. Cancer Lett, 2012, 315(1): 86-95. [37] Grandage VL, Gale RE, Linch DC, et al. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways[J]. Leukemia, 2005, 19(4): 586-594. [38] Lin X, Zhang X, Wang Q, et al. Perifosine downregulates MDR1 gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-kappaB signaling pathway in a human breast cancer cell line[J]. Neoplasma, 2012, 59(3): 248-256. [39] Parajuli B, Lee HG, Kwon SH, et al. Salinomycin inhibits Akt/NF-kappaB and induces apoptosis in cisplatin resistant ovarian cancer cells[J]. Cancer Epidemiol, 2013,37(4):512-517. |