[1] Colver A, Fairhurst C, Pharoah PO: Cerebral palsy[J]. Lancet,2014, 383:1240-1249. [2] Moreno-De-Luca A, Ledbetter DH, Martin CL: Genetic [corrected] insights into the causes and classification of [corrected] cerebral palsies[J]. Lancet Neurol,2012, 11:283-292. [3] Novak I, Morgan C, Adde L, et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment[J]. JAMA Pediatr,2017, 171:897-907. [4] Korzeniewski SJ, Slaughter J, Lenski M, et al. The complex aetiology of cerebral palsy[J]. Nat Rev Neurol,2018, 14:528-543. [5] Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy[J]. Nat Rev Dis Primers, 2016, 2:15082. [6] MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants[J]. Am J Obstet Gynecol,2015, 213:779-788. [7] Hemminki K, Li X, Sundquist K, et al. High familial risks for cerebral palsy implicate partial heritable aetiology[J]. Paediatr Perinat Epidemiol, 2007, 21:235-241. [8] Garne E, Dolk H, Krägeloh-Mann I, et al. Cerebral palsy and congenital malformations[J]. Eur J Paediatr Neurol, 2008, 12:82-88. [9] O'Callaghan ME, MacLennan AH, Haan EA, et al. The genomic basis of cerebral palsy: A HuGE systematic literature review[J]. Hum Genet, 2009, 126:149-172. [10] Fahey MC, Maclennan AH, Kretzschmar D, et al. The genetic basis of cerebral palsy[J]. Dev Med Child Neurol, 2017, 59:462-469. [11] Turner TN, Coe BP, Dickel DE, et al. Genomic patterns of de novo mutation in simplex autism[J]. Cell, 2017, 171:710-722.e712. [12] Hu H, Kahrizi K, Musante L, et al. Genetics of intellectual disability in consanguineous families[J]. Mol Psychiatry, 2019, 24:1027-1039. [13] Satterstrom FK, Kosmicki JA, Wang J, et al.: Large-Scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism[J]. Cell, 2020, 180:568-584.e523. [14] Li N, Zhou P, Tang H, et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy[J]. Brain, 2021.doi:10.1016/j.cell.2019.12.036(2020). [15] Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders[J]. Nat Rev Genet, 2016, 17:9-18. [16] Rak R, Dahan O, Pilpel Y. Repertoires of tRNAs: The couplers of genomics and proteomics[J]. Annu Rev Cell Dev Biol, 2018, 34:239-264. [17] Schaffer AE, Pinkard O, Coller JM: tRNA Metabolism and Neurodevelopmental Disorders[J]. Annu Rev Genomics Hum Genet, 2019, 20:359-387. [18] El Yacoubi B, Bailly M, de Crécy-Lagard V: Biosynthesis and function of posttranscriptional modifications of transfer RNAs[J]. Annu Rev Genet, 2012, 46:69-95. [19] Molina-Gonzalez I, Miron VE: Astrocytes in myelination and remyelination[J]. Neurosci Lett, 2019, 713:134532. [20] Kıray H, Lindsay SL, Hosseinzadeh S, et al. The multifaceted role of astrocytes in regulating myelination[J]. Exp Neurol, 2016, 283:541-549. [21] Brookes KJ, Chen W, Xu X, et al. Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder[J]. Biol Psychiatry, 2006, 60:1053-1061. [22] Pinto D, Delaby E, Merico D, et al.: Convergence of genes and cellular pathways dysregulated in autism spectrum disorders[J]. Am J Hum Genet, 2014, 94:677-694. [23] Jungerius BJ, Hoogendoorn ML, Bakker SC, et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia[J]. Mol Psychiatry, 2008, 13:1060-1068. [24] Schmitt A, Gofferje V, Weber M, et al. The brain-specific protein MLC1 implicated in megalencephalic leukoencephalopathy with subcortical cysts is expressed in glial cells in the murine brain[J]. Glia, 2003, 44:283-295. [25] Dietrich J, Lacagnina M, Gass D, Richfield E, Mayer-Pröschel M, Noble M, Torres C, Pröschel C: EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy[J]. Nat Med, 2005, 11:277-283. |