[1] American Psychiatric Association. The diagnostic and statistical manual of mental disorders[M].5th ed.Washington DC:American Psychiatric Publishing Inc,2013. [2] Kodak T, Bergmann S. Autism spectrum disorder:Characteristics, associated behaviors, and early Intervention[J]. Pediatr Clin North Am, 2020, 67(3):525-535. [3] Liu X, Zou M, Sun C, et al. Prenatal folic acid supplements and offspring′s autism spectrum disorder:A meta-analysis and meta-regression[J]. J Autism Dev Disord, 2022, 52(2):522-539. [4] Bai D, Yip BHK, Windham GC, et al. Association of genetic and environmental factors with autism in a 5-country cohort[J]. JAMA Psychiatry, 2019, 76(10):1035-1043. [5] Robinson EB, Samocha KE, Kosmicki JA, et al. Autism spectrum disorder severity reflects the average contribution of de novo and familial influences[J]. Proc Natl Acad Sci USA, 2014, 111(42):15161-15165. [6] Yuen RK, Thiruvahindrapuram B, Merico D, et al. Whole-genome sequencing of quartet families with autism spectrum disorder[J]. Nat Med, 2015, 21(2):185-191. [7] Willsey HR, Willsey AJ, Wang B, et al. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder[J]. Nat Rev Neurosci, 2022, 23(6):323-341. [8] Wu J, Yu P, Jin X, et al. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing[J]. J Genet Genomics, 2018, 45(10):527-538. [9] Coe BP, Stessman HAF, Sulovari A, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity[J]. Nat Genet, 2019, 51(1):106-116. [10] Kanai Y, Okada Y, Tanaka Y, et al. KIF5C, a novel neuronal kinesin enriched in motor neurons[J]. J Neurosci, 2000, 20(17):6374-6384. [11] Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility[J]. Cell, 1985, 42(1):39-50. [12] Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs:Structure, function, and dynamics[J]. Physiol Rev, 2008, 88(3):1089-1118. [13] Woehlke G, Schliwa M. Walking on two heads:The many talents of kinesin[J]. Nat Rev Mol Cell Biol, 2000, 1(1):50-58. [14] Hirokawa N, Noda Y, Tanaka Y, et al. Kinesin superfamily motor proteins and intracellular transport[J]. Nat Rev Mol Cell Biol, 2009, 10(10):682-696. [15] Klinman E, Holzbaur ELF. Walking forward with kinesin[J]. Trends Neurosci, 2018, 41(9):555-556. [16] Twelvetrees AE, Pernigo S, Sanger A, et al. The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1[J]. Neuron, 2016, 90(5):1000-1015. [17] Nakajima K, Yin X, Takei Y, et al. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy[J]. Neuron, 2012, 76(5):945-961. [18] Fukuda Y, Pazyra-murphy MF, Silagi ES, et al. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival[J]. J Cell Biol, 2021, 220(1):e202005051. [19] Zhao J, Fok AHK, Fan R, et al. Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory[J]. Elife, 2020, 9:e53456. [20] Cho KI, Cai Y, Yi H, et al. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function[J]. Traffic, 2007, 8(12):1722-1735. [21] Iworima DG, Pasqualotto BA, Rintoul GL. Kif5 regulates mitochondrial movement, morphology, function and neuronal survival[J]. Mol Cell Neurosci, 2016, 72:22-33. [22] Campbell PD, Shen K, Sapio MR, et al. Unique function of Kinesin Kif5A in localization of mitochondria in axons[J]. J Neurosci, 2014, 34(44):14717-14732. [23] Hares K, Kemp K, Loveless S, et al. KIF5A and the contribution of susceptibility genotypes as a predictive biomarker for multiple sclerosis[J]. J Neurol, 2021, 268(6):2175-2184. [24] Citrigno L, Magariello A, Pugliese P, et al. Kinesins in neurological inherited diseases:a novel motor-domain mutation in KIF5A gene in a patient from Southern Italy affected by hereditary spastic paraplegia[J]. Acta Neurol Belg, 2018, 118(4):643-646. [25] Poirier K, Lebrun N, Broix L, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly[J]. Nat Genet, 2013, 45(6):639-647. [26] Cavallin M, Hubert L, Cantagrel V, et al. Recurrent KIF5C mutation leading to frontal pachygyria without microcephaly[J]. Neurogenetics, 2016, 17(1):79-82. [27] Willemsen MH, Ba W, Wissink-lindhout WM, et al. Involvement of the kinesin family members KIF4A and KIF5C in intellectual disability and synaptic function[J]. J Med Genet, 2014, 51(7):487-494. [28] Morita H, Komuro I. Somatic mutations in cerebral cortical malformations[J]. N Engl J Med, 2014, 371(21):2037. [29] Michels S, Foss K, Park K, et al. Mutations of KIF5C cause a neurodevelopmental disorder of infantile-onset epilepsy, absent language, and distinctive malformations of cortical development[J]. Am J Med Genet A, 2017, 173(12):3127-3131. [30] Al-shamsi A, Hertecant JL, Souid AK, et al. Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates[J]. Orphanet J Rare Dis, 2016, 11(1):94. [31] Duquesne S, Nassogne MC, Clapuyt P, et al. Phenotype description in KIF5C gene hot-spot mutations responsible for malformations of cortical development (MCD)[J]. Eur J Med Genet, 2020, 63(9):103991. [32] Turner TJ, Zourray C, Schorge S, et al. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy[J]. J Neurochem, 2021, 157(2):229-262. [33] Benger M, Kinali M, Mazarakis ND. Autism spectrum disorder:Prospects for treatment using gene therapy[J]. Mol Autism, 2018, 9:39. |