[1]Zhang BX, Lin M, Qi XY, et al. Characterization of circulating CD8+T cells expressing skin homing and cytotoxic molecules in active non-segmental vitiligo[J]. Eur J Dermatol, 2013, 23(3): 331-338.
[2]Laddha NC, Dwivedi M, Mansuri MS, et al. Vitiligo: interplay between oxidative stress and immune system[J]. Exp Dermatol, 2013, 22(4): 245-250.
[3]Wu RL, Feng S, Wang JD. Stay on the inhibition effect of baicalin and baicalin metallic coordination[J]. Sci Technol Rev, 2006, 24(2): 212.
[4]厍士芳. 黄芩属植物的药用价值研究[J]. 中医药信息, 2012, 29 (3): 139-142.
[5]刘 璋, 胡佑伦, 韩瑞玲. 黑素生成过程中黄芩的调节作用[J]. 武汉大学学报(医学版), 2005, 26(1): 66-67.
[6]Hong WS, Hu DN, Qian GP, et al. Treatment of vitiligo in children and adolescents by autologous cultured pure melanocytes transplantation with comparison of efficacy to results in adults[J]. J Eur Acad Dermatol Venereol, 2011, 25(5): 538-543.
[7]王鲁梅, 卢婉娇, 袁景桃, 等. 白癜风患者外周血中白介素25、白介素17、转化生长因子-β的表达及其临床意义[J]. 中国医学创新, 2016, 13(17): 37-40.
[8]Glassman SJ. Vitiligo, reactive oxygen species and T-cells[J]. Clin Sci, 2011, 120(3): 99-120.
[9]祝逸平, 金嵘, 王遂泉, 等. 黄芩苷对白癜风小鼠模型的作用机制研究[J]. 中国临床药理学与治疗学, 2017, 22(1): 27-32.
[10]Zhang BX, Lin M, Qi XY, et al. Characterization of circulating CD8+T cells expressing skin homing and cytotoxic molecules in active non-segmental vitiligo[J]. Eur J Dermatol, 2013, 23(3): 331-338.
[11]Elassiuty YE, Klarquist J, Speiser J, et al. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo[J]. Exp Dermatol, 2011, 20(6): 496-501.
[12]Liu B, Jian Z, Li Q, et al. Baicalein protects human melanocytes from H2O2-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38 MAPK pathway[J]. Free Radic Biol Med, 2012, 53(2): 183-193.
[13]Jian Z, Li K, Liu L, et al. Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway[J]. J Invest Dermatol, 2011, 131(7): 1420-1427.
[14]Dell'Anna ML, Matstrofrancesco A, Sala R, et al. Antioxidants and narrow band-UVB in the treatment of vifiligo:a double-blind placebo controlled trial[J]. Clin Bcp Dermatoi, 2007, 32(6): 631-636.
[15]Maresca V, Roccella M, Roccella F, et al. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo[J]. J Invest Dermatol, 1997, 109(3) : 310-313.
[16]Agrawal D, Shajil EM, Marfatia YS, et al. Study on the antioxidant status of vitiligo patients of different age groups in Baroda[J]. Pigment Cell Res, 2004, 17(3) : 289-294.
[17]Mosenson JA, Flood K, Klarquist J, et al. Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress[J]. Pigment Cell Melanoma Res, 2014 , 27(2): 209.
[18]Mosenson JA, Zloza A, Nieland JD, et al. Mutant HSP70 reverses autoimmune depigmentation in vitiligo[J]. Sci Transl Med, 2013, 5(174): 174ra28.
[19]Denman, C.J, McCracken, J, Hariharan, V, et al. HSP 70i accelerates depigmentation in a mouse model of autoimmune vitiligo[J]. J Invest Dermatol, 2008, 128(8): 2041-2048.
[20]Li Y, Kurlander RJ. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation[J]. J Transl Med, 2010, 104(8): 1-15.
[21]Le Poole IC, Luiten RM. Autoimmune etiology of generalized vitiligo[J]. Curr Dir Autoimmun, 2008, 10: 227-243. |