[1]Roome CJ, Power EM, Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse[J]. J Neurophysiol, 2013, 109(6): 1669-1680.
[2]Shenoda B. The Role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury[J]. Transl Stroke Res, 2015, 6(3): 181-190.
[3]Wang M, Tan J, Miao Y, et al. Role of Ca2+ and ion channels in the regulation of apoptosis under hypoxia[J]. Histol Histopathol, 2018, 33(3): 237-246.
[4]O'Kane D, Gibson L, May CN, et al. Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model[J]. Biometals, 2018, 31(5): 821-834.
[5]Fu Y, Tang C, Cai J, et al. Rodent models of AKI-CKD transition[J]. Am J Physiol-Renal Physiol, 2018, 315(4): F1098-F106.
[6]He C, O'Halloran DM. Analysis of the Na+/Ca2+ Exchanger gene family within the phylum nematoda[J]. PloS one, 2014, 9(11): e112841.
[7]Roome CJ, Knoepfel T, Empson RM. Functional contributions of the plasma membrane calcium ATPase and the sodium-calcium exchanger at mouse parallel fibre to Purkinje neuron synapses[J]. Pflu Archiv-Eur J Physiol, 2013, 465(2): 319-331.
[8]Palty R, Hershfinkel M, Sekler I. Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger[J]. J Biol Chem, 2012, 287(38): 31650-31657.
[9]Ikeda K, Nakajima T, Yamamoto Y, et al. Roles of transient receptor potential canonical (TRPC) channels and reverse-mode Na+/Ca2+ exchanger on cell proliferation in human cardiac fibroblasts: effects of transforming growth factor beta 1[J]. Cell Calcium, 2013, 54(3): 213-225.
[10]Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) - Structure, function, and regulation in health and disease[J]. Mol Asp Med, 2013, 34(2/3): 220-235.
[11]John S, Kim B, Olcese R, et al. Molecular determinants of pH regulation in the cardiac Na+/Ca2+ exchanger[J]. J Gene Physiol, 2018, 150(2): 245-257.
[12]Esrafili MD, Asadollahi S. The enhancing effect of a cation-pi interaction on the cooperativity of halogen bonds: A computational study[J]. J Mol Grap Mod, 2017, 73: 200-207.
[13]Chang PC, Lu YY, Lee HL, et al. Paradoxical effects of sodium-calcium exchanger inhibition on torsade de pointes and early afterdepolarization in a heart failure rabbit model[J]. J Cardiovas Pharmacol, 2018, 72(2): 97-105.
[14]Bogeholz N, Schulte JS, Kaese S, et al. The effects of SEA0400 on Ca2+ transient amplitude and proarrhythmia depend on the Na+/Ca2+ exchanger expression level in murine models[J]. Front Pharmacol, 2017, 8: 649.
[15]Sherkhane P, Kapfhammer JP. Chronic pharmacological blockade of the Na+/Ca2+ exchanger modulates the growth and development of the Purkinje cell dendritic arbor in mouse cerebellar slice cultures[J]. Euro J Neuro, 2017, 46(5): 2108-2120.
[16]Su JJ, Qi GY, Dang XZ, et al. Progress in the physiological and pathophysiological functions of sodium calcium exchangers[J]. Shengli Xuebao, 2014, 66(2): 241-251.
[17]Parnis J, Montana V, Delgado-Martinez I, et al. Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes[J]. J Neuro, 2013, 33(17): 7206-7219.
[18]Machado Berger RC, Benetti A, Costa Girardi AC, et al. Influence of long-term salt diets on cardiac Ca2+ handling and contractility proteins in hypertensive rats[J]. Am J Hyp, 2018, 31(6): 726-734.
[19]Liu B, Yang L, Zhang B, et al. NF-kappa B-dependent upregulation of NCX1 induced by angiotensin II contributes to calcium influx in rat aortic smooth muscle cells[J]. Cana J Cardiol, 2016, 32(11): 1356.
[20]Mori Y, Tomonaga D, Kalashnikova A, et al. Effects of 3,3', 5-triiodothyronine on microglial functions[J]. Glia, 2015, 63(5): 906-920.
[21]Sunkaria A, Bhardwaj S, Halder A, et al. Migration and phagocytic ability of activated microglia during post-natal development is mediated by calcium-dependent purinergic signalling[J]. Mol Neurobiol, 2016, 53(2): 944-954.
[22]Fu C, Hao J, Zeng M, et al. Modulation of late sodium current by Ca2+-calmodulin-dependent protein kinase II, protein kinase C and Ca2+ during hypoxia in rabbit ventricular myocytes[J]. Exp Physiol, 2017, 102(7): 818-834.
[23]Kortus S, Srinivasan C, Forostyak O, et al. Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous Ca2+ (i) oscillations in magnocellular neurones of the rat supraoptic nucleus[J]. Cell Calcium, 2016, 59(6): 289-298.
[24]Khananshvili D. Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions[J]. Pfl Archiv-Eur J Physiol, 2014, 466(1): 43-60.
[25]Yuan J, Yuan C, Xie M, et al. The intracellular loop of the Na+/Ca2+ exchanger contains an "awareness ribbon"-shaped two-helix bundle domain[J]. Biochem, 2018, 57(34): 5096-5104.
[26]Bode K, O'Halloran DM. NCX-DB: a unified resource for integrative analysis of the sodium calcium exchanger super-family[J]. Bmc Neurosci, 2018, 19(1): 19.
[27]Gu L, Tao Y, Chen C, et al. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation[J]. Int Urol Nephrol, 2018, 50(11): 2027-2035.
[28]Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion[J]. Compre Physiol, 2017, 7(1): 113-170.
[29]Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia[J]. Stroke, 2007, 38(2): 674-676.
[30]Ladilov Y, Haffner S, Balser-Schafer C, et al. Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger[J]. Am J Physiol-Heart Circul Physiol, 1999, 276(6): H1868-H76.
[31]Yamashita J, Itoh M, Kuro T, et al. Pre-or post-ischemic treatment with a novel Na+/Ca2+ exchange inhibitor, KB-R7943, shows renal protective effects in rats with ischemic acute renal failure (retraction of vol 296, pg 412, 2001) [J]. J Pharmacol Exp Thera, 2014, 349(2): 344.
[32]Tu J, Lu L, Cai W, et al. cAMP/protein kinase A activates cystic fibrosis transmembrane conductance regulator for ATP release from rat skeletal muscle during low pH or contractions[J]. PloS One, 2012, 7(11): e50157.
[33]Hernandez-Ojeda M, Urena-Guerrero ME, Gutierrez-Barajas PE, et al. KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment[J]. J Bio Sci, 2017, 24(1): 27.
[34]Iwamoto T, Kita S, Uehara A, et al. Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400[J]. J Biol Chem, 2004, 279(9): 7544-7553.
[35]Iwamoto T, Inoue Y, Ito K, et al. The exchanger inhibitory peptide region-dependent inhibition of Na+/Ca2+ exchange by SN-6 2- 4-(4-nitrobenzyloxy)benzyl thiazolidine-4-carboxylic acid ethyl ester, a novel benzyloxyphenyl derivative[J]. Mol Pharmacol, 2004, 66(1): 45-55.
[36]Iwamoto T, Kita S. YM-244769, a novel Na+/Ca2+ exchange inhibitor that preferentially inhibits NCX3, efficiently protects against hypoxia/reoxygenation-induced SH-SY5Y neuronal cell damage[J]. Mol Pharmacol, 2006, 70(6): 2075-2083.
[37]Gotoh Y, Kita S, Fujii M, et al. Genetic knockout and pharmacologic inhibition of NCX2 cause natriuresis and hypercalciuria[J]. Bio Biophy Res Commu, 2015, 456(2): 670-675.
[38]Bouchard R, Omelchenko A, Le HD, et al. Effects of SEA0400 on mutant NCX1.1 Na+/Ca2+ exchangers with altered ionic regulation[J]. Mol Pharmacol, 2004, 65(3): 802-810.
[39]Goto Y, Ogata M, Kita S, et al. YM-244769, a novel Na+/Ca2+ exchange inhibitor, efficiently improves ischemia/reperfusion-induced renal injury[J]. Bio J, 2012, 102(3): 662A-663A.
[40]Yamashita J, Kita S, Iwamoto T, et al. Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ Exchange[J]. J Pharmacol Exp Ther, 2003, 304(1): 284-293.
[41]Ogata M, Iwamoto T, Tazawa N, et al. A novel and selective Na+/Ca2+ exchange inhibitor, SEA0400, improves ischemia/reperfusion-induced renal injury[J]. Euro J Pharmacol, 2003, 478(2/3): 187-98.
[42]Schroder UH, Breder J, Sabelhaus CF, et al. The novel Na+/Ca2+ exchange inhibitor KB-R7943 protects CA1 neurons in rat hippocampal slices against hypoxic/hypoglycemic Injury[J]. Neuropharmacol, 1999, 38(2): 319-321.
[43]Wakimoto K, Kobayashi K, Kuro-o M, et al. Targeted disruption of Na+/Ca2+ exchange gene leads to cardiomyocyte apoptosis and defects in heartbeat[J]. J Biol Chem, 2000, 275(47): 36991-36998.
[44]Hamming KSC, Soliman D, Webster NJ, et al. Inhibition of beta-cell sodium-calcium exchange enhances glucose-dependent elevations in cytoplasmic calcium and insulin secretion[J]. Diabetes, 2010, 59(7): 1686-1693.
[45]Takai N, Yamada A, Muraki K, et al. KB-R7943 reveals possible involvement of Na+/Ca2+ exchange in elevation of intracellular Ca2+ in rat carotid arterial myocytes[J]. J Sm Mus Res, 2004, 40(1): 35-42.
[46]Yamashita J, Itoh M, Kuro T, et al. Pre- or post-ischemic treatment with a novel Na+/Ca2+ Exchange inhibitor, KB-R7943, shows renal protective effects in rats with ischemic acute renal failure[J]. J Pharmacol Exp Ther, 2001, 286(2): 412-419.
[47]Kuro T, Kobayashi Y, Takaoka M, et al. Protective effect of KB-R7943, a novel Na+/Ca2+ exchange inhibitor, on ischemic acute renal failure in rats[J]. Jpn J Pharmacol, 1999, 81(2): 247-251.
[48]Wiczer BM, Marcu R, Hawkins BJ. KB-R7943, a plasma membrane Na+/Ca2+ exchange inhibitor, blocks opening of the mitochondrial permeability transition pore[J]. Bio Biophy Res Commu, 2014, 444(1): 44-49.
[49]Abramov AY, Duchen MR. Actions of ionomycin, 4-BrA23187 and a novel electrogenic Ca(2+) ionophore on mitochondria in intact cells[J]. Cell Calcium, 2003, 33(2): 101-112.
[50]Ogata M, Iwamoto T, Tazawa N, et al. A novel and selective Na+/Ca2+ Exchange inhibitor, SEA0400, improves ischemia/reperfusion-induced renal injury[J]. Eur J Pharmacol, 2003, 478(2/3): 187-198.
[51]Yonehana T, Gemba M. Ameliorative effect of adenosine on hypoxia-reoxygenation injury in LLC-PK1, a porcine kidney cell line[J]. Jpn J Pharmacol, 1999, 80(2): 163-167.
[52]Gotoh Y, Ogata M, Kita S, et al. YM-244769, a novel Na+/Ca2+ exchange inhibitor, efficiently improves ischemia/reperfusion-induced renal injury (vol 70, pg 2075, 2006) [J]. Biophy J, 2012, 102(6): 1468. |