[1]Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018,361:k2179.
[2]Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease[J]. Integr Med (Encinitas), 2014,13(6):17-22.
[3]Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013,13(5):321-335.
[4]Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352.
[5]Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
[6]Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. GUT, 1987, 28(10):1221-1227.
[7]Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3):189-200.
[8]Flint HJ, Duncan SH, Scott KP, et al. Links between diet, gut microbiota composition and gut metabolism[J]. Proc Nutr Soc, 2015,74(1):13-22.
[9]El KA, Armougom F, Gordon JI, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota[J]. Nat Rev Microbiol, 2013, 11(7):497-504.
[10]Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system[J]. Genes Dev, 2016, 30(14):1589-1597.
[11]Ragsdale SW, Pierce E. Acetogenesis and the wood-ljungdahl pathway of CO(2) fixation[J]. Biochim Biophys Acta, 2008,1784(12):1873-1898.
[12]Hetzel M, Brock M, Selmer T, et al. Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein[J]. Eur J Biochem, 2003, 270(5):902-910.
[13]Scott KP, Martin JC, Campbell G, et al. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium "Roseburia inulinivorans"[J]. J Bacteriol, 2006, 188(12):4340-4349.
[14]Louis P, Duncan SH, McCrae SI, et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J]. J Bacteriol, 2004, 186(7):2099-2106.
[15]Duncan SH, Barcenilla A, Stewart CS, et al. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine[J]. Appl Environ Microbiol, 2002, 68(10):5186-5190.
[16]Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data[J]. MBio, 2014, 5(2):e889.
[17]Donohoe DR, Collins LB, Wali A, et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation[J]. Mol Cell, 2012, 48(4):612-626.
[18]van der Beek CM, Bloemen JG, van den Broek MA, et al. Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans[J]. J Nutr, 2015,145(9): 2019-2024.
[19]Bloemen JG, Venema K, van de Poll MC, et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J]. Clin Nutr, 2009, 28(6):657-661.
[20]Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3):189-200.
[21]Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13(5):321-335.
[22]Ferreira CM, Vieira AT, Vinolo MA, et al. The central role of the gut microbiota in chronic inflammatory diseases[J]. J Immunol Res, 2014, 2014:689492.
[23]Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268):1282-1286.
[24]Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480):446-450.
[25]De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci U S A, 2010, 107(33):14691-14696.
[26]Breuer RI, Soergel KH, Lashner BA, et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial[J]. Gut, 1997, 40(4):485-491.
[27]Vernia P, Annese V, Bresci G, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial[J]. Eur J Clin Invest, 2003, 33(3):244-248.
[28]Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota[J]. Inflamm Bowel Dis, 2009, 15(8):1183-1189.
[29]Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J]. Gut, 2014, 63(8):1275-1283.
[30]Bjarnadottir TK, Gloriam DE, Hellstrand SH, et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse[J]. Genomics, 2006, 88(3):263-273.
[31]Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2):364-371.
[32]Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem, 2003, 278(13):11312-11319.
[33]Wang N, Guo DY, Tian X, et al. Niacin receptor GPR109A inhibits insulin secretion and is down-regulated in type 2 diabetic islet beta-cells[J]. Gen Comp Endocrinol, 2016, 237:98-108.
[34]Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nat Commun, 2015, 6:6734.
[35]Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1):128-139.
[36]Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268):1282-1286.
[37]Sina C, Gavrilova O, Forster M, et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation[J]. J Immunol, 2009, 183(11):7514-7522.
[38]Singh N, Thangaraju M, Prasad PD, et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases[J]. J Biol Chem, 2010, 285(36):27601-27608.
[39]Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1):128-139.
[40]Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2):159-166.
[41]Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunol, 2017, 10(4):946-956.
[42]Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480):451-455.
[43]Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013,341(6145):569-573.
[44]Fleischer J, Bumbalo R, Bautze V, et al. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon[J]. Cell Tissue Res, 2015, 361(3):697-710.
[45]Thangaraju M, Cresci G, Itagaki S, et al. Sodium-coupled transport of the short chain fatty acid butyrate by SLC5A8 and its relevance to colon cancer[J]. J Gastrointest Surg, 2008,12(10):1773-1781, 1781-1782.
[46]Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights[J]. Pharmacol Ther, 2014,143(3):323-336.
[47]Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives[J]. Mol Cancer Res, 2007, 5(10):981-989.
[48]Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer[J]. Nat Rev Drug Discov, 2002,1(4):287-299.
[49]Jin UH, Cheng Y, Park H, et al. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and caco-2 human colon cancer cells[J]. Sci Rep, 2017, 7(1):10163.
[50]Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
[51]Thangaraju M, Carswell KN, Prasad PD, et al. Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3[J]. Biochem J, 2009, 417(1):379-389.
[52]Singh N, Thangaraju M, Prasad PD, et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases[J]. J Biol Chem, 2010, 285(36):27601-27608.
[53]Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014,111(6):2247-2252.
[54]Liu L, Li L, Min J, et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells[J]. Cell Immunol, 2012,277(1/2):66-73.
[55]Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013,341(6145):569-573.
[56]Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480):451-455.
[57]Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway[J]. Mucosal Immunol, 2015,8(1):80-93.
[58]Kim M, Qie Y, Park J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host Microbe, 2016, 20(2):202-214.
[59]Singh NP, Singh UP, Singh B, et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis[J]. PLOS ONE, 2011,6(8):e23522.
[60]Kespohl M, Vachharajani N, Luu M, et al. The microbial metabolite butyrate induces expression of Th1-associated factors in CD4(+) T cells[J]. Front Immunol, 2017,8:1036.
[61]Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013,145(2):396-406.
[62]Hess J, Wang Q, Gould T, et al. Impact of Agaricus bisporus Mushroom Consumption on Gut Health Markers in Healthy Adults[J]. Nutrients, 2018,10(10).doi:10.3390/nu10101402.
[63]Coraci D, Giovannini S, Loreti C, et al. The past encounters the future: "old" diagnostic methods to check innovative treatments for carpal tunnel syndrome. Comment on: "Treatment of carpal tunnel syndrome: from ultrasonography to ultrasound surgery" by Petrover and Richette. Joint Bone Spine 2017 https://doi.org/10.1016/j.jbspin.2017.11.003[J]. Joint Bone Spine, 2018,85(6):783-784.
[64]Takagi T, Naito Y, Higashimura Y, et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA[J]. Br J Nutr,2016, 116(7):1199-1205. |