[1] Stigers KD, Soth MJ, Nowick JS. Designed molecule that fold tomimic protein secondary structures[J]. Curr Opin Chem Biol, 1999, 3(6):714-723. [2] Livnah O, Stura EA, Johnson DL, et al. Functional mimicry of a protein hormone by a peptide agonist:the EPO receptor complex at 2. 8[J]. Science, 1996, 273(5274):464-471. [3] Bunnett NW, Bouvier M, De Blasi A. Peptide G-proteincoupled receptors meet at Erice[J]. Trends Pharmacol Sci, 1998, 19(9):343-346. [4] Berger HA, Anderson MP. Identification and regulation of the cystic fibrosis transmembrane conductance regulatorgenerated chloride channel[J]. J Clin Invest, 1991, 88(4):1422-1431. [5] Cohn JA. Reduced CFTR function and the pathobiology of idiopathic pancreatitis[J]. J Clin Gastroenterol, 2005, 39(4 Suppl 2):S70-S77. [6] Levin MH, Verkman AS. CFTR-regulated chloride transport at the ocular surface in living mice measured by potential differences[J]. Invest Ophthalmol Vis Sci, 2005, 46(4):1428-1434. [7] Morris AP, Scott JK, Ball JM, et al. NSP4 elicits age-dependent diarrhea and Ca(2+) mediated I(-) influx into intestinal crypts of CF mice[J]. Am J Physiol, 1999, 277(2 Pt 1):G431-G444. [8] Ma T, Thiagarajah JR, Yang H, et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion[J]. J Clin Invest, 2002, 110(11):1651-1658. [9] Li H, Findlay IA, Sheppard DN. The relationship between cell proliferation, Cl-secretion, and renal cyst growth:a study using CFTR inhibitors[J]. Kidney Int, 2004, 66(5):1926-1938. [10] Ma T, Vetrivel L, Yang H, et al. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening[J]. J Biol Chem, 2002, 277(40):37235-37241. [11] Yang H, Shelat AA, Guy RK, et al. Nanomolar affinity small molecule correctors of defective delta F508-CFTR chloride channel gating[J]. J Biol Chem, 2003, 278(37):35079-35085. [12] Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists[J]. Am J Physiol Cell Physiol, 2001, 281(5):C1734-1742. [13] Illek B, Fischer H, Santos GF, et al. cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein[J]. Am J Physiol, 1995, 268(4 Pt 1): C886-893. [14] Denning GM, AndersonMP, Amara JF, et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive[J]. Nature, 1992, 358(6389):761-764. [15] Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70:Implications for intracellular trafficking of Delta F508-CFTR[J]. Am J Physiol, 2000, 278(2):C259-C267. [16] Rubenstein RC, Zeitlin PL. A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in delta F508-homozygous cystic fibrosis patients:Partial restoration of nasal epithelial CFTR function[J]. Am J Respir Crit Care Med, 1998, 157(2):484-490. [17] Moyer BD, Loffing-Cueni D, Loffing J, et al. Butyrate increases apical membrane CFTR but reduces chloride secretion in MDCK cells[J]. Am J Physiol, 1999, 277(2 Pt 2):F271-F276. [18] Sato S, Ward CL, Krouse ME, et al. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation[J]. J Biol Chem, 1996, 271(2):635-638. [19] Hwang TC, Sheppard DN. Molecular pharmacology of the CFTR Cl-channel[J]. Trends Pharmacol Sci, 1999, 20(11):448-453. [20] Chang XB, Tabcharani JA, Hou YX, et al. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites[J]. J Biol Chem, 1993, 268(15):11304-11311. [21] Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis[J]. Cell, 1993, 73(7):1251-1254. [22] 涂长春, 李晓宇, 杨军平, 等. 荷叶生物总碱对肥胖高脂血症大鼠减肥作用的实验研究[J]. 江西中医学院学报, 2001, 13(3):120-121. [23] 唐裕芳, 张妙玲, 刘忠义, 等. 荷叶生物碱的提取及其抑菌活性研究[J]. 广州食品工业科技, 2004, 20(2):51-53. [24] Kashiwada Y, Aoshima A, Ikeshiro Y, et al. Anti-HIV benzyliso2 quinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids[J]. Bioorg Med Chem, 2005, 13(2):443-448. [25] Boustie J, Stigliani JL, Montanha J, et al. Antipoliovirus structure-activity relationships of some aporphine alkaloids[J]. J Nat Prod, 1998, 61(4):480-484. [26] Kunitomo J. Alkaloids of Nelumbo Nucifera[J]. Phytochemistry, 1973, 12(3):699-701. [27] Chulia S, Ivorra MD, Cave A, et al. Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat[J]. J Pharm Pharmacol, 1995, 47(8): 647-650. [28] Bhattacharya SK, Bose R, Ghosh P, et al. Psy chopharmacological studies on (-)-nuciferine and its Hofmann degradation product atherosperminine[J]. Psy chopharmacology, 1978, 59(1):29-33. [29] Polc P, Haefely W. Effects of intravenous kainic acid, Nmethyl-D-aspartate, and (-)-nuciferine on the cat spinal cord[J]. Naunyn Schmiedebergs Arch Pharmacol, 1977, 300(3):199-203. |