[1] Van Bambeke F, Barcia-Macay M, Lemaire S, et al.Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives[J]. Curr Opin Drug Discov Devel, 2006, 9(2):218-230. [2] Gottesman MM, Fojo T,Bates SE.Multidrug resistance in cancer: role of ATP-dependent transporters[J] . Nat Rev Cancer, 2002, 2(1):48-58. [3] Zhou F, Zhang J, Li P, et al.Toward a new age of cellular pharmacokinetics in drug discovery[J] . Drug Metab Rev, 2011, 43(3):335-345. [4] Rockey DD, Scidmore MA, Bannantine JP, et al.Proteins in the chlamydial inclusion membrane[J] . Microbes Infect, 2002, 4(3):333-340. [5] Swanson MS,Fernandez-Moreira E.A microbial strategy to multiply in macrophages: the pregnant pause[J] .Traffic, 2002, 3(3):170-177. [6] Waites KB,Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen[J]. Clin Microbiol Rev, 2004, 17 (4):697-728, table of contents. [7] Van Kirk LS, Hayes SF,Heinzen RA.Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins[J]. Infect Immun, 2000, 68(8):4706-4713. [8] Barnewall RE, Rikihisa Y, Lee EH.Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor[J]. Infect Immun, 1997, 65(4):1455-1461. [9] Jimenez de Bagues MP, Ouahrani-Bettache S, Quintana JF, et al. The new species Brucella microti replicates in macrophages and causes death in murine models of infection[J] . J Infect Dis, 2010, 202(1):3-10. [10] De Pascalis R, Chou AY, Bosio CM, et al.Development of functional and molecular correlates of vaccine-induced protection for a model intracellular pathogen, F. tularensis LVS[J]. PLoS Pathog, 2012, 8(1):e1002494. [11] Roy CR,Tilney LG.The road less traveled: transport of Legionella to the endoplasmic reticulum.[J] J Cell Biol, 2002, 158(3):415-419. [12] Pizarro-Cerda J,Cossart P.Subversion of cellular functions by Listeria monocytogenes[J].J Pathol, 2006, 208(2):215-223. [13] Early J,Bermudez LE.Mimicry of the pathogenic mycobacterium vacuole in vitro elicits the bacterial intracellular phenotype, including early-onset macrophage death.[J]. Infect Immun, 2011, 79(6):2412-2422. [14] Steele-Mortimer O.The Salmonella-containing vacuole: moving with the times[J]. Curr Opin Microbiol, 2008, 11(1):38-45. [15] Reis RS, Horn F.Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases[J]. Gut Pathog, 2010, 2(1):8. [16] Kubica M, Guzik K, Koziel J, et al.A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages[J] . PLoS One, 2008, 3(1):e1409. [17] Pujol C,Bliska JB.The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis[J] . Infect Immun, 2003, 71(10):5892-5899. [18] Luckner P,Brandsch M.Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1[J] . Eur J Pharm Biopharm, 2005, 59(1):17-24. [19] Ganapathy ME, Huang W, Rajan DP, et al.beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter[J] . J Biol Chem, 2000, 275(3):1699-1707. [20] 张秀红. β-内酰胺抗生素的肠道及肾脏转运机制[J] . 中国临床药理学与治疗学, 2003, 8(3):252-254. [21] Carryn S, Chanteux H, Seral C, et al.Intracellular pharmacodynamics of antibiotics[J] . Infect Dis Clin North Am, 2003, 17(3):615-634. [22] Bounds SJ, Nakkula R,Walters JD.Fluoroquinolone transport by human monocytes: characterization and comparison to other cells of myeloid lineage[J]. Antimicrob Agents Chemother, 2000, 44(10):2609-2614. [23] Brayton JJ, Yang Q, Nakkula RJ, et al.An in vitro model of ciprofloxacin and minocycline transport by oral epithelial cells[J]. J Periodontol, 2002, 73(11):1267-1272. [24] Van Bambeke F, Carryn S, Seral C, et al.Cellular pharmacokinetics and pharmacodynamics of the glycopeptide antibiotic oritavancin (LY333328) in a model of J774 mouse macrophages[J] .Antimicrob Agents Chemother, 2004, 48(8):2853-2860. [25] Barcia-Macay M, Mouaden F, Mingeot-Leclercq MP, et al.Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts)[J]. J Antimicrob Chemother, 2008, 61(6):1288-1294. [26] Marquez B, Caceres NE, Mingeot-Leclercq MP, et al.Identification of the efflux transporter of the fluoroquinolone antibiotic ciprofloxacin in murine macrophages: studies with ciprofloxacin-resistant cells[J]. Antimicrob Agents Chemother, 2009, 53(6):2410-2416. [27] Lemaire S, Van Bambeke F, Mingeot-Leclercq M P, et al. Modulation of the cellular accumulation and intracellular activity of daptomycin towards phagocytized Staphylococcus aureus by the P-glycoprotein (MDR1) efflux transporter in human THP-1 macrophages and madin-darby canine kidney cells[J] .Antimicrob Agents Chemother, 2007, 51(8):2748-2757. [28] Tulkens P,Trouet A.The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibroblasts[J]. Biochem Pharmacol, 1978, 27(4):415-424. [29] Haslam IS, Wright JA, O'Reilly DA, et al. Intestinal ciprofloxacin efflux: the role of breast cancer resistance protein (ABCG2)[J]. Drug Metab Dispos, 2011, 39(12):2321-2328. [30] Alvarez A I, Perez M, Prieto JG, et al.Fluoroquinolone efflux mediated by ABC transporters[J]. J Pharm Sci, 2008, 97(9):3483-3493. [31] Lemaire S, Tulkens PM,Van Bambeke F.Cellular pharmacokinetics of the novel biaryloxazolidinone radezolid in phagocytic cells: studies with macrophages and polymorphonuclear neutrophils[J] . Antimicrob Agents Chemother, 2010, 54(6):2540-2548. [32] Sandberg A, Jensen KS, Baudoux P, et al.Intra- and extracellular activity of linezolid against Staphylococcus aureus in vivo and in vitro[J]. J Antimicrob Chemother, 2010, 65(5):962-973. [33] Baudoux P, Bles N, Lemaire S, et al.Combined effect of pH and concentration on the activities of gentamicin and oxacillin against Staphylococcus aureus in pharmacodynamic models of extracellular and intracellular infections[J] . J Antimicrob Chemother, 2007, 59(2):246-253. [34] Tano E, Cars O,Lowdin E, Pharmacodynamic studies of moxifloxacin and erythromycin against intracellular Legionella pneumophila in an in vitro kinetic model[J] . J Antimicrob Chemother, 2005, 56(1):240-242. [35] Sandberg A, Hessler JH, Skov RL, et al.Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model[J]. Antimicrob Agents Chemother, 2009, 53(5):1874-1883. [36] Qazi SN, Harrison SE, Self T, et al.Real-time monitoring of intracellular Staphylococcus aureus replication[J] . J Bacteriol, 2004, 186(4):1065-1077. [37] Roch N,Maurin M.Antibiotic susceptibilities of Legionella pneumophila strain Paris in THP-1 cells as determined by real-time PCR assay.[J] J Antimicrob Chemother, 2005, 55(6):866-871. [38] Hoffmann J, Vitale I, Buchmann B, et al.Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone[J] . Cancer Res, 2008, 68(13):5301-5308. [39] Armstead AL, Li B.Nanomedicine as an emerging approach against intracellular pathogens[J]. Int J Nanomedicine, 2011, 6:3281-3293. [40] Chanteux H, Mingeot-Leclercq MP, Sonveaux E, et al.Intracellular accumulation and activity of ampicillin used as free drug and as its phthalimidomethyl or pivaloyloxymethyl ester (pivampicillin) against Listeria monocytogenes in J774 macrophages[J]. J Antimicrob Chemother, 2003, 52(4):610-615. [41] Del Pozo JL,Patel R.Ceftobiprole medocaril: a new generation beta-lactam[J]. Drugs Today (Barc), 2008, 44(11):801-825. [42] Idelevich EA, Kriegeskorte A, Stubbings W, et al.Comparative in vitro activity of finafloxacin against staphylococci displaying normal and small colony variant phenotypes[J]. J Antimicrob Chemother, 2011, 66(12):2809-2813. [43] Pumerantz A, Muppidi K, Agnihotri S, et al.Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA)[J]. Int J Antimicrob Agents, 2011, 37(2):140-144. [44] Imbuluzqueta E, Gamazo C, Ariza J, et al.Drug delivery systems for potential treatment of intracellular bacterial infections[J]. Front Biosci, 2010, 15:397-417. [45] Seleem M N, Jain N, Pothayee N, et al.Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline[J]. FEMS Microbiol Lett, 2009, 294(1):24-31. [46] Maya S, Indulekha S, Sukhithasree V, et al.Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus[J]. Int J Biol Macromol, 2012. [47] Sharma R, Muttil P, Yadav AB, et al.Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra[J]. J Antimicrob Chemother, 2007, 59(3):499-506. [48] Seral C, Carryn S, Tulkens PM, et al.Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus[J]. J Antimicrob Chemother, 2003, 51(5):1167-1173. |