[1] Liggins RT, Burt HM.Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations[J]. Adv Drug Deliv Rev, 2002, 54(2): 191-202. [2] Lammers T, Hennink WE, Storm G.Tumour-targeted nanomedicines: principles and practice[J]. Br J Cancer, 2008, 99(3): 392-397. [3] Marusyk A, Polyak K.Tumor heterogeneity: causes and consequences[J]. Biochim Biophys Acta, 2010, 1805(1): 105-117. [4] Baguley BC.Multiple Drug Resistance Mechanisms in Cancer[J]. Mol Biotechnol, 2010, 46(3): 308-316 [5] Duncan R.The dawning era of polymer therapeutics[J]. Nat Rev Drug Discov, 2003, 2(5): 347-360. [6] Farokhzad OC,Langer R.Nanomedicine: developing smarter therapeutic and diagnostic modalities[J]. Advanced Drug Delivery Reviews, 2006, 58(14): 1456-1459. [7] Kabanov AV, Alakhov VY.Pluronic (R) block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2002, 19(1): 1-72. [8] Chithrani BD, Ghazani AA, Chan WCW.Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Lett, 2006, 6(4): 662-668. [9] 蔡鑫君, 徐颖颖, 倪坚军. 紫杉醇白蛋白纳米粒抗肿瘤临床研究进展[J]. 中国临床药理学与治疗学, 2011, 16(6): 716-720. [10] Chien AJ, Illi JA, Ko AH, et al.A PhaseI study of a 2-day lapatinib chemosensitization pulse preceding nanoparticle albumin-bound paclitaxel for advanced solid malignancies[J]. Clin Cancer Res, 2009, 15(1): 5569-5575. [11] Valle JW, Armstrong A, Newman C, et al.A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction[J]. Invest New Drugs, 2011, 29(5): 1029-1037. [12] Sparreboom A, Asperen JV, Mayer U, et al.Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine[J]. Proc Natl Acad Sci, 1997, 94(5): 2031-2035. [13] Takemura G, Fujiwara H.Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management[J]. Prog Cardiovasc Dis, 2007, 49(5): 330-352. [14] Owens III DE, Peppas NA.Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles[J]. Int J Pharm, 2006, 307(1): 93-102. [15] Han HD, Lee A, Hwang T, et al.Enhanced circulation time and antitumor activity of doxorubicin by comblike polymer-incorporated liposomes[J]. J Control Release, 2007, 120(3): 161-168. [16] Matsumura Y, Maeda H.A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res, 1986, 46(1): 6387-6392. [17] Han H, Lee A, Song C, et al.In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes[J]. Int J Pharm, 2006, 313(1/2): 181-188. [18] Torrisi MR, Lotti LV, Belleudi F, et al.Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization[J]. Mol Biol Cell, 1999, 10(2): 417-434. [19] Wang J, Chen P, Su ZF, et al.Amplified delivery of indium-111 to EGFR-positive human breast cancer cells[J]. Nucl Med Biol, 2001, 28(8): 895-902. [20] Kunjachan S, Blauz A, Moeckel D, et al.Overcoming cellular multidrug resistance using classical nanomedicine formulations[J]. Eur J Pharm Sci, 2012, 45(4): 421-428. [21] Mu CF, Balakrishnan P, Cui FD, et al.The effects of mixed MPEG-PLAPluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel[J]. Biomaterials, 2010, 31(8): 2371-2379. [22] Lee ES, Na K, Bae YH.Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor[J]. J Control Release, 2005, 103(2): 405-418. [23] Rapoport N, Marin A, Luo Y, et al.Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: Effect on the intracellular drug localization[J].J Pharm Sci, 2002, 91(1): 157-170. [24] Zeng F, Lee H, Allen C.Epidermal growth factor-conjugated poly(ethylene glycol)-block- poly(δ-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics[J]. Bioconjug Chem, 2006, 17(2): 399-409. [25] Boddapati SV, Gerard GMD Souza, Erdogan S.Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo[J]. Nano Let, 2008, 8(8): 2559-2563. [26] Ruenraroengsak P, Al-Jamal KT, Hartell N, et al.Cell uptake, cytoplasmic diffusion and nuclear access of a 6.5 nm diameter dendrimer[J]. Int J Pharm, 2007, 331(2): 215-219. [27] Conner SD, Schmid SL.Regulated portals of entry into the cell[J]. Nature, 2003, 422(6): 37-44. [28] Gratton SEA, Ropp P, Pohlhaus PD, et al.The effect of particle design on cellular internalization pathways[J]. Proc Natl Acad Sci USA, 2008, 105(33): 11613-11618. [29] Batrakova EV, Li S, Alakhov VY, et al.Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85[J]. Pharm Res, 2003, 20(10): 1581-1590. [30] Kabanov AV, Batrakova EV, Alakhov VY.An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers[J]. J Control Release, 2003, 91(1/2): 75-83. [31] Batrakova EV, Li S, Li Y, et al.Effect of pluronic P85 on ATPase activity of drug efflux transporters[J]. Pharm Res, 2004, 21(12): 2226-2233. [32] Minko T, Batrakova EV, Li S, et al.Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells[J]. J Control Release, 2005,105(3): 269-278. [33] Chen YC, Bathula SR, Li J, et al.Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer[J]. J Biol Chem, 2010, 285(16): 22639-22650. [34] Wang Z, Li Y, Ahmad A, et al.Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance[J]. Drug Resist Updat, 2010, 13(4/5): 109-118. [35] Ganta S, Amiji M.Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells[J]. Mol Pharm, 2009, 6(3): 928-939. [36] Song XR, Cai Z, Zheng Y, et al.Reversion of multidrug resistance by coencapsulation of vincristine and verapamil in PLGA nanoparticles[J]. Eur J PharmSci, 2009, 37(3/4): 300-305. [37] Wu J, Lu Y, Lee A, et al.Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil[J]. J Pharmacol Pharm Sci, 2007, 10(3): 350-357. [38] Kim D, Lee ES, Oh KT, et al.Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH[J]. Small, 2008, 4(11): 2043-2050. [39] Lee ES, Gao Z, Kim D, et al.Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance[J]. J Control Release, 2008, 129(3): 228-236. [40] Chen BA, Dai YY, Wang XM, et al.Synergistic effect of the combination of nanoparticulate Fe3O4 and Au with daunomycin on K562/A02 cells[J]. Int J Nanomed, 2008, 3(3): 343-350. [41] Chen BA, Lai BB, Cheng J, et al.Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo[J]. Int J Nanomedicine, 2009, 4: 201-208 [42] Chen AM, Zhang M, Wei D, et al.Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells[J]. Small, 2009, 5(23): 2673-2677. [43] Fan L, Li F, Zhang H, et al.Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance[J]. Biomaterials, 2010, 31(21): 5634-5642. [44] Cho K, Wang X, Nie S, et al.Therapeutic nanoparticles for drug delivery in cancer[J]. Clin Cancer Res, 2008, 14(5): 1310-1316. [45] Parveen S, Sahoo SK.Polymeric nanoparticles for cancer therapy[J]. J Drug Target, 2008, 16(2): 108-123. [46] Szakács G, Paterson JK, Ludwig JA, et al.Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3): 219-234. |