[1] Ulrich P, Cerami A. Protein glycation, diabetes, and aging[J]. Recent Prog Horm Res, 2001, 56: 1-21. [2] Zhen DH, Chen YR, Tang XL. Metformin reverses the deleterious effects of high glucose on osteoblast function[J]. J Diabetes Complications, 2010, 24(5): 334-344. [3] 甄东户, 汤旭磊, 成建国, 等. 二甲双胍减轻糖基化终末产物对成骨细胞功能损害的观察[J]. 中国糖尿病杂志, 2012, 20(7): 549-552. [4] Akay G, Birch MA, Bokhari MA. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro[J]. Biomaterials, 2004, 25(18): 3991-4000. [5] McCarthy AD, Etcheverry SB, Bruzzone L, et al. Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells [J]. Mol Cell Biochem, 1997, 170(1/2): 43-51. [6] Digirolamo CM, Stokes D, Colter D, et al. Propagation and senescence of human marrow stromal cells in culture:a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate [J]. Br J Haematol, 1999, 107(2): 275-281. [7] Rothe G, Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′7′ -dichlorofluorescin[J]. J Leukoc Biol, 1990, 47(5): 440-448. [8] 李红辉, 刘恩波, 谢群, 等. 罗格列酮与二甲双胍对2型糖尿病患者血压的影响[J]. 中国临床药理学与治疗学, 2005, 10(6): 717-720. [9] 方丽娟, 刘乃丰. 二甲双胍的心血管保护作用[J]. 中国临床药理学与治疗学, 2011, 16(2): 232-236. [10] Wiernsperger NF. Metformin: intrinsic vasculorotective properties[J]. Diabetes Technol Ther, 2000, 2(2): 259-272. [11] Tessier D, Maheux P, Khalil A, et al. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes [J]. Metabolism, 1999, 48(7): 897-903. [12] Ruggiero-Lopez D, Lecomte M, Moinet G, et al. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end products formation[J]. Biochem Pharmacol, 1999, 58(11): 1765-1773. [13] Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins[J]. J Biol Chem, 1994, 269(13): 9889-9897. [14] Gallo A, Ceolotto G, Pinton P, et al. Metformin prevents glucose-induced protein kinase C-beta2 activation in human umbilical vein endothelial cells through an antioxidant mechanism[J]. Diabetes, 2005, 54(4): 1123-1131. [15] Bellin C, Wiza DH de, Wiernsperger NF, et al. Generation of reactive oxygen species by endothelial and smooth muscle cells:influence of hyperglycemia and metformin[J]. Horm Metab Res, 2006, 38(11): 732-739. [16] Ouslimani N, J Peynet J, Bonnefont-Rousselot D, et al. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells[J]. Metabolism, 2005, 54(6): 829-834. [17] Bonnefont-Rousselot D, Raji B, Walrand S, et al. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress[J]. Metabolism, 2003, 52(5): 586-589. [18] Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-Products (AGEs) on osteoblastic cells[J]. Exp Clin Endocrinol Diabetes, 2008, 116(6): 333-340. |