[1] |
DeSantis C, Siegel R, Bandi P, et al. Breast cancer statistics[J]. CA Cancer J Clin, 2011, 61: 409-418.
|
[2] |
Lyman GH, Dale DC, Tomita D, et al.A retrospective evaluation of chemotherapy dose intensity and supportive care for early-stage breast cancer in a curative setting[J]. Breast Cancer Res Treat, 2013, 139(3): 863-872.
|
[3] |
Pinto N, Ludeman SM, Dolan ME.Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy[J]. Pharmacogenomics, 2009, 10(12): 1893-1903.
|
[4] |
Bray J, Sludden J, Griffin MJ, et al.Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide[J]. Br J Cancer, 2010, 102(6): 1003-1009.
|
[5] |
Su HI, Sammel MD, Velders L, et al.Association of cyclophosphamide drug-metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors[J]. Fertil Steril, 2010, 94(2): 645-654.
|
[6] |
Timm R, Kaiser R, Lotsch J, et al.Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19[J]. Pharmacogenomics J, 2005, 5(6): 365-373.
|
[7] |
Wang D, Wang HB.Oxazaphosphorine bioactivation and detoxification: the role of xenobiotic receptors[J]. Acta Pharm Sin B, 2012, 2(2): 1-21.
|
[8] |
Gor PP, Su HI, Gray RJ, et al.Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study[J]. Breast Cancer Res, 2010, 12(3): R26.
|
[9] |
Huang Z, Roy P, Waxman DJ.Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide[J]. Biochem Pharmacol, 2000, 59(8): 961-972.
|
[10] |
Roy P, Yu LJ, Crespi CL, et al.Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles[J]. Drug Metab Dispos, 1999, 27(6): 655-666.
|
[11] |
Zhang H, Sridar C, Kenaan C, et al.Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex[J]. J Pharmacol Exp Ther, 2011, 338(3): 803-809.
|
[12] |
Saitoh A, Sarles E, Capparelli E, et al.CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children[J]. AIDS, 2007, 21(16): 2191-2199.
|
[13] |
Nyakutira C, Roshammar D, Chigutsa E, et al.High prevalence of the CYP2B6 516G.T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe[J]. Eur J Clin Pharmacol, 2008, 64(4): 357-365.
|
[14] |
Zanger UM, Klein K.Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance[J]. Front Genet, 2013, 3(4): 1-12.
|
[15] |
李莉华, 周希科, 何杰, 等. CYP2B6Q172H和K262R基因多态性对乳腺癌患者环磷酰胺化疗预后的影响[J]. 肿瘤防治研究, 2010, 37(12): 1387-1390.
|
[16] |
陈江华, 赵建华, 唐金海, 等. 环磷酰胺代谢酶基因多态性与乳腺癌化疗反应相关性的探讨[J]. 中华肿瘤防治杂志, 2012, 19(10): 726-730.
|
[17] |
王连生. 细胞色素P450氧化酶的遗传药理学[M]//周宏灏, 张伟主编. 遗传药理学. 2版. 北京:科学出版社, 2013: 110-111.
|
[18] |
李清,郭栋. Ⅱ相药物代谢酶的遗传药理学[M]//周宏灏, 张伟主编. 遗传药理学. 2版. 北京:科学出版社, 2013: 146-150.
|
[19] |
Ji MH, Tang JH, Zhao JH, et al.Polymorphisms in genes involved in drug detoxification and clinical outcomes of anthracycline-based neoadjuvant chemotherapy in Chinese Han breast cancer patients[J]. Cancer Bio Ther, 2012, 13(5): 264-271.
|
[20] |
Yao S, Barlow WE, Albain KS, et al.Gene polymorphisms in cyclophosphamide metabolism pathway, treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer[J]. Clin Cancer Res, 2010, 16(24): 6169-6176.
|
[21] |
Sweeney C, McClure Y, Fares MY, et al. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism[J]. Clin Cancer Res, 2000, 60: 5621-5624.
|
[22] |
Zhang BL, Sun T, Zhang BN, et al.Polymorphisms of GSTP1 is associated with differences of chemotherapy response and toxicity in breast cancer[J]. Chin Med J, 2011,124(2): 199-204.
|
[23] |
Yang G, Shu XO, Ruan ZX, et al.Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma[J]. Cancer, 2005, 103(1): 52-58.
|
[24] |
Sweeney C, Ambrosone CB, Joseph LJ, et al.Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment[J]. Int J Cancer, 2003, 103(6): 810-814.
|
[25] |
Ekhart C, Rodenhuis S, Smits PHM, et al.Relations between polymorphisms in drug-metabolising enzymes and toxicity of chemotherapy with cyclophosphamide, thiotepa and carboplatin[J]. Pharmacogenet Genomics, 2008, 18(11): 1009-1015.
|
[26] |
Kim KP, Ahn JH, Kim SB, et al.Prospective evaluation of the drug-metabolizing enzyme polymorphisms and toxicity profile of docetaxel in Korean patients with operable lymph node-positive breast cancer receiving adjuvant chemotherapy[J]. Cancer Chemother Pharmacol, 2012, 69(5): 1221-1227.
|
[27] |
Low SK, Kiyotani K, Mushiroda T, et al.Association study of genetic polymorphism in ABCC4with cyclophosphamide-induced adverse drug reactions in breast cancer patients[J]. J Hum Genet, 2009, 54(10): 564-571.
|
[28] |
孟祥光, 倪文琼, 王超, 等. 银屑病全身治疗的遗传药理学进展[J]. 中国临床药理学与治疗学, 2012, 17(11): 1307-1313.
|