[1] |
Sia D, Tovar V, Moeini A, et al.Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies[J].Oncogene, 2013, 32(41): 4861-4870.
|
[2] |
崔云甫,李惠声.肝内胆管癌的诊治进展[J].国际外科学杂志, 2012, 39(5): 292-295.
|
[3] |
Witjes CD, Karim-Kos HE, Visser O,et al.Intrahepatic cholangiocarcinoma in a low endemic area: rising incidence and improved survival[J].HPB (Oxford), 2012, 14(11): 777-781.
|
[4] |
黄志强, 肝胆管外科的发展方向[J].外科理论与实践, 2011,16(4): 329-331.
|
[5] |
Mavros MN, Economopoulos KP, Alexiou VG, et al.Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis[J].JAMA Surg, 2014.
|
[6] |
Poultsides GA, Zhu AX, Choti MA, et al.Intrahepatic cholangiocarcinoma[J].Surg Clin North Am, 2010, 90(4): 817-837.
|
[7] |
O'Dell MR, Huang JL, Whitney-Miller CL,et al.Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma[J].Cancer Res, 2012, 72(6): 1557-1567.
|
[8] |
Hsu M, Sasaki M, Igarashi S,et al.KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas[J].Cancer, 2013, 119(9): 1669-1674.
|
[9] |
Voss JS, Holtegaard LM, Kerr SE,et al.Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions[J].Hum Pathol, 2013, 44(7): 1216-1222.
|
[10] |
Stutes M, Tran S, DeMorrow S.Genetic and epigenetic changes associated with cholangiocarcinoma: from DNA methylation to microRNAs[J].World J Gastroenterol, 2007, 13(48): 6465-6469.
|
[11] |
Yoshikawa D, Ojima H, Iwasaki M,et al.Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma[J].Br J Cancer, 2008, 98(2): 418-425.
|
[12] |
Dawson MA, Kouzarides T.Cancer epigenetics: from mechanism to therapy[J].Cell, 2012, 150(1): 12-27.
|
[13] |
刘谋泽,何发忠,张伟.抗肿瘤药物的表观遗传学研究进展[J].药学学报, 2013,161(11): 1629-1636.
|
[14] |
马爱妞, 王永祥, 周向军.靶向诱导DNA甲基化与肿瘤治疗研究进展[J].中国临床药理学与治疗学, 2009,14(3): 241-244.
|
[15] |
Isomoto H, Mott JL, Kobayashi S,et al.Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing[J].Gastroenterology, 2007, 132(1): 384-396.
|
[16] |
Dachrut S, Banthaisong S, Sripa M,et al.DNA copy-number loss on 1p36.1 harboring RUNX3 with promoter hypermethylation and associated loss of RUNX3 expression in liver fluke-associated intrahepatic cholangiocarcinoma[J].Asian Pac J Cancer Prev, 2009, 10(4): 575-582.
|
[17] |
Gao Y, Yang M, Jiang Z,et al.IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma[J].Hum Pathol, 2014,45(6):1184-1191.
|
[18] |
Li B, Han Q, Zhu Y,et al.Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist[J].FEBS J, 2012, 279(13): 2393-2398.
|
[19] |
Chen L, Yan HX, Yang W,et al.The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma[J].J Hepatol, 2009, 50(2): 358-369.
|
[20] |
Qiu YH, Wei YP, Shen NJ,et al.miR-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells[J].Cell Physiol Biochem, 2013, 32(5): 1331-1341.
|
[21] |
Iwaki J, Kikuchi K, Mizuguchi Y,et al.MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line[J].PLoS One, 2013, 8(7): e69496.
|
[22] |
Liu MZ, McLeod HL, He FZ,et al.Epigenetic perspectives on cancer chemotherapy response[J].Pharmacogenomics, 2014, 15(5): 699-715.
|
[23] |
Iwahashi S, Shimada M, Utsunomiya T,et al.Histone deacetylase inhibitor enhances the anti-tumor effect of gemcitabine: a special reference to gene-expression microarray analysis[J].Oncol Rep, 2011, 26(5): 1057-1062.
|
[24] |
Valle J, Wasan H, Palmer DH,et al.Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J].N Engl J Med, 2010, 362(14): 1273-1281.
|
[25] |
Woo SM, Lee WJ, Kim JH,et al.Gemcitabine plus cisplatin versus capecitabine plus cisplatin as first-line chemotherapy for advanced biliary tract cancer: a retrospective cohort study[J].Chemotherapy, 2013, 59(3): 232-238.
|
[26] |
Zhu AX, Meyerhardt JA, Blaszkowsky LS,et al.Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study[J].Lancet Oncol, 2010, 11(1): 48-54.
|
[27] |
Gruenberger B, Schueller J, Heubrandtner U,et al.Cetuximab, gemcitabine, and oxaliplatin in patients with unresectable advanced or metastatic biliary tract cancer: a phase 2 study[J].Lancet Oncol, 2010, 11(12): 1142-1148.
|
[28] |
Yoshikawa D, Ojima H, Kokubu A,et al.Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma[J].Br J Cancer, 2009, 100(8): 1257-1266.
|
[29] |
Nathanson DA, Gini B, Mottahedeh J,et al.Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA[J].Science, 2014, 343(6166): 72-76.
|
[30] |
Nakadate Y, Kodera Y, Kitamura Y,et al.KRAS mutation confers resistance to antibody-dependent cellular cytotoxicity of cetuximab against human colorectal cancer cells[J].Int J Cancer, 2014, 134(9): 2146-2155.
|
[31] |
Gridelli C, Peters S, Sgambato A,et al.ALK inhibitors in the treatment of advanced NSCLC[J].Cancer Treat Rev, 2014, 40(2): 300-306.
|
[32] |
Chang YT, Chang MC, Huang KW,et al.Clinicopathological and prognostic significances of EGFR, KRAS and BRAF mutations in biliary tract carcinomas in Taiwan[J].J Gastroenterol Hepatol, 2014, 29(5): 1119-1125.
|