[1] |
Cepeda V, Fuertes MA, Castilla J.Biochemical mechanisms of cisplatin cytotoxicity[J]. Anticancer Agents Med Chem, 2007, 7(1): 3-18.
|
[2] |
赵钢涛, 杨凡, 丁媛媛, 等. 基因单核苷酸多态性对非小细胞肺癌铂类化疗敏感性影响的研究进展[J]. 中国临床药理学与治疗学, 2010, 15(6): 715-720.
|
[3] |
Rabik CA, Dolan ME.Molecular mechanisms of resistance and toxicity associated with platinating agents[J]. Cancer Treat Rev, 2007, 33(1): 9-23.
|
[4] |
Garmann D, Warnecke A, Kalayda GV, et al.Cellular accumulation and cytotoxicity of macromolecular platinum complexes in cisplatin-resistant tumor cells[J]. J Control Release, 2008, 131(2): 100-106.
|
[5] |
Arnesano F, Scintilla S, Natile G.Interaction between platinum complexes and a methionine motif found in copper transport proteins[J]. Angew Chem Int Ed Engl, 2007, 46(47): 9062-9064.
|
[6] |
Ishida S, Lee J, Thiele DJ, et al.Uptake of the anticancer drug cisplatin mediated by the copper transporter ctr1 in yeast and mammals[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14298-14302.
|
[7] |
More SS, Akil O, Ianculescu AG, et al.Role of the copper transporter, ctr1, in platinum-induced ototoxicity[J]. J Neurosci, 2010, 30(28): 9500-9509.
|
[8] |
Xu X, Ren H, Zhou B, et al.Prediction of copper transport protein 1 (ctr1) genotype on severe cisplatin induced toxicity in non-small cell lung cancer (nsclc) patients[J]. Lung Cancer, 2012, 77(2): 438-442.
|
[9] |
Holzer AK, Samimi G, Katano K, et al.The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells[J]. Mol Pharmacol, 2004, 66(4): 817-823.
|
[10] |
Filipski KK, Loos WJ, Verweij J, et al.Interaction of cisplatin with the human organic cation transporter 2[J]. Clin Cancer Res, 2008, 14(12): 3875-3880.
|
[11] |
Filipski KK, Mathijssen RH, Mikkelsen TS, et al.Contribution of organic cation transporter 2 (oct2) to cisplatin-induced nephrotoxicity[J]. Clin Pharmacol Ther, 2009, 86(4): 396-402.
|
[12] |
Fujita T, Urban TJ, Leabman MK, et al.Transport of drugs in the kidney by the human organic cation transporter, oct2 and its genetic variants[J]. J Pharm Sci, 2006, 95(1): 25-36.
|
[13] |
Zhang J, Zhou W.Ameliorative effects of slc22a2 gene polymorphism 808 g/t and cimetidine on cisplatin-induced nephrotoxicity in chinese cancer patients[J]. Food Chem Toxicol, 2012, 50(7): 2289-2293.
|
[14] |
Iwata K, Aizawa K, Kamitsu S, et al.Effects of genetic variants in slc22a2 organic cation transporter 2 and slc47a1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events[J]. Clin Exp Nephrol, 2012, 16(6): 843-851.
|
[15] |
Homolya L, Varadi A, Sarkadi B.Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate[J]. Biofactors, 2003, 17(1/2/3/4): 103-114.
|
[16] |
Han B, Gao G, Wu W, et al.Association of abcc2 polymorphisms with platinum-based chemotherapy response and severe toxicity in non-small cell lung cancer patients[J]. Lung Cancer, 2011, 72(2): 238-243.
|
[17] |
Schwartz JB.The influence of sex on pharmacokinetics[J]. Clin Pharmacokinet, 2003, 42(2): 107-121.
|
[18] |
Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with p-glycoprotein expression and activity in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3473-3478.
|
[19] |
Illmer T, Schuler US, Thiede C, et al.Mdr1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients[J]. Cancer Res, 2002, 62(17): 4955-4962.
|
[120] |
Chen S, Huo X, Lin Y, et al.Association of mdr1 and ercc1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients[J]. Int J Hyg Environ Health, 2010, 213(2): 140-145.
|
[21] |
Sheehan D, Meade G, Foley VM, et al.Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochem J, 2001, 360(Pt 1): 1-16.
|
[22] |
Goto S, Iida T, Cho S, et al.Overexpression of glutathione s-transferase pi enhances the adduct formation of cisplatin with glutathione in human cancer cells[J]. Free Radic Res, 1999, 31(6): 549-558.
|
[23] |
Moyer AM, Salavaggione OE, Wu TY, et al.Glutathione s-transferase p1: gene sequence variation and functional genomic studies[J]. Cancer Res, 2008, 68(12): 4791-4801.
|
[24] |
Chen YC, Tzeng CH, Chen PM, et al.Influence of gstp1 i105v polymorphism on cumulative neuropathy and outcome of folfox-4 treatment in asian patients with colorectal carcinoma[J]. Cancer Sci, 2010, 101(2): 530-535.
|
[25] |
Ruzzo A, Graziano F, Loupakis F, et al.Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line folfox-4 chemotherapy[J]. J Clin Oncol, 2007, 25(10): 1247-1254.
|
[26] |
Joerger M, Burgers SA, Baas P, et al.Germline polymorphisms in patients with advanced nonsmall cell lung cancer receiving first-line platinum-gemcitabine chemotherapy: a prospective clinical study[J]. Cancer, 2012, 118(9): 2466-2475.
|
[27] |
Khrunin AV, Moisseev A, Gorbunova V, et al.Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients[J]. Pharmacogenomics J, 2010, 10(1): 54-61.
|
[28] |
Marsh S, Paul J, King CR, et al.Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the scottish randomised trial in ovarian cancer[J]. J Clin Oncol, 2007, 25(29): 4528-4535.
|
[29] |
Enzlin JH, Scharer OD.The active site of the DNA repair endonuclease xpf-ercc1 forms a highly conserved nuclease motif[J]. EMBO J, 2002, 21(8): 2045-2053.
|
[30] |
Suk R, Gurubhagavatula S, Park S, et al.Polymorphisms in ercc1 and grade 3 or 4 toxicity in non-small cell lung cancer patients[J]. Clin Cancer Res, 2005, 11(4): 1534-1538.
|
[31] |
Tzvetkov MV, Behrens G, O'Brien VP, et al. Pharmacogenetic analyses of cisplatin-induced nephrotoxicity indicate a renoprotective effect of ercc1 polymorphisms[J]. Pharmacogenomics, 2011, 12(10): 1417-1427.
|
[32] |
Giachino DF, Ghio P, Regazzoni S, et al.Prospective assessment of xpd lys751gln and xrcc1 arg399gln single nucleotide polymorphisms in lung cancer[J]. Clin Cancer Res, 2007, 13(10): 2876-2881.
|
[33] |
de Boer J, Hoeijmakers JH. Nucleotide excision repair and human syndromes[J]. Carcinogenesis, 2000, 21(3): 453-460.
|
[34] |
Despras E, Pfeiffer P, Salles B, et al.Long-term xpc silencing reduces DNA double-strand break repair[J]. Cancer Res, 2007, 67(6): 2526-2534.
|
[35] |
Sakano S, Hinoda Y, Sasaki M, et al.Nucleotide excision repair gene polymorphisms may predict acute toxicity in patients treated with chemoradiotherapy for bladder cancer[J]. Pharmacogenomics, 2010, 11(10): 1377-1387.
|
[36] |
Zhang L, Gao G, Li X, et al.Association between single nucleotide polymorphisms (snps) and toxicity of advanced non-small-cell lung cancer patients treated with chemotherapy[J]. PLoS One, 2012, 7(10): e48350.
|
[37] |
El-Khamisy SF, Masutani M, Suzuki H, et al.A requirement for parp-1 for the assembly or stability of xrcc1 nuclear foci at sites of oxidative DNA damage[J]. Nucleic Acids Res, 2003, 31(19): 5526-5533.
|
[38] |
Wang Z, Xu B, Lin D, et al.Xrcc1 polymorphisms and severe toxicity in lung cancer patients treated with cisplatin-based chemotherapy in chinese population[J]. Lung Cancer, 2008, 62(1): 99-104.
|