[1]Singer M, Deutschman CS, Seymour CW, et al.The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016,315(8):801-810.
[2]Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013,39(2):165-228.
[3]Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients?[J]Clin Infect Dis,2014,58(8):1072-1083.
[4]Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient--concepts appraised by the example of antimicrobial agents[J]. Adv Drug Deliv Rev, 2014,77:3-11.
[5]McKenzie C.Antibiotic dosing in critical illness[J]. J Antimicrob Chemother, 2011,66 Suppl 2:ii25-31.
[6]Kiang TK, Hafeli UO, Ensom MH. A comprehensive review on the pharmacokinetics of antibiotics in interstitial fluid spaces in humans: implications on dosing and clinical pharmacokinetic monitoring[J]. Clin Pharmacokinet, 2014,53(8):695-730.
[7]Isla A, Canut A, Arribas J, et al.Meropenem dosing requirements against Enterobacteriaceae in critically ill patients: influence of renal function, geographical area and presence of extended-spectrum beta-lactamases[J]. Eur J Clin Microbiol Infect Dis,2016,35(3):511-519.
[8]Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis[J]. Intensive Care Med,2016, 42(10):1535-1545.
[9]Petrosillo N, Drapeau CM, Agrafiotis M, et al. Some current issues in the pharmacokinetics/pharmacodynamics of antimicrobials in intensive care[J]. Minerva Anestesiol,2010,76(7):509-524.
[10]郭松喜, 王丹, 刘春生, 等. 脓毒症实验动物模型的研究进展[J]. 中华肺部疾病杂志 (电子版), 2015,5:027.
[11]Rittirsch D, Huber-Lang MS, Flierl MA, et al.Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc,2009,4(1):31-36.
[12]Marchand S, Dahyot C, Lamarche I, et al. Microdialysis study of imipenem distribution in skeletal muscle and lung extracellular fluids of noninfected rats[J]. Antimicrob Agents Chemother, 2005,49(6):2356-2361.
[13]Marchand S, Dahyot C, Lamarche I, et al. Lack of effect of experimental hypovolemia on imipenem muscle distribution in rats assessed by microdialysis[J]. Antimicrob Agents Chemother, 2005,49(12):4974-4979.
[14]de Araujo BV, Laureano JV, Grunspan LD, et al. Validation of an efficient LC-microdialysis method for gemifloxacin quantitation in lung, kidney and liver of rats[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2013,919-920:62-66.
[15]Joukhadar C, Thallinger C, Poppl W, et al. Concentrations of voriconazole in healthy and inflamed lung in rats[J]. Antimicrob Agents Chemother, 2009,53(6):2684-2686.
[16]Tasso L, Bettoni CC, Oliveira LK, et al. Evaluation of gatifloxacin penetration into skeletal muscle and lung by microdialysis in rats[J]. Int J Pharm, 2008,358(1/2):96-101.
[17]Liu P, Fuhrherr R, Webb AI, et al. Tissue penetration of cefpodoxime into the skeletal muscle and lung in rats[J]. Eur J Pharm Sci, 2005,25(4/5):439-44.
[18]Dahyot C, Marchand S, Pessini GL, et al. Microdialysis study of imipenem distribution in skeletal muscle and lung extracellular fluids of Acinetobacter baumannii-infected rats[J]. Antimicrob Agents Chemother, 2006,50(6):2265-2267.
[19]Mauric O, Thallinger C, Kugler SA, et al.The ability of fluconazole to penetrate into ventilated, healthy and inflamed lung tissue in a model of severe sepsis in rats[J].Pharmacology, 2011,87(3/4):130-134.
[20]梁艳冰, 唐皓, 翟诚顺, 等. 脓毒症大鼠心肌细胞凋亡与 p53 和 Bcl-2 基因表达的关系[J]. 中华急诊医学杂志, 2008,17(2):128-131.
[21]徐叔云, 卞如濂, 陈修. 药理实验方法学[M].人民卫生出版社,1991;2002.
[22]Lindenmann J, Kugler SA, Matzi V, et al.High extracellular levels of cefpirome in unaffected and infected lung tissue of patients[J]. J Antimicrob Chemother, 2011,66(1):160-164.
[23]Hutschala D, Kinstner C, Skhirtladze K, et al. The impact of perioperative atelectasis on antibiotic penetration into lung tissue: an in vivo microdialysis study[J]. Intensive Care Med, 2008,34(10):1827-1834.
[24]李奕, 华翔, 肖和平, 等.微透析法研究左氧氟沙星静脉注射在肺炎链球菌肺炎大鼠肺部的药动学[J]. 中国感染与化疗杂志, 2013,13(2):109-114.
[25]Kuti JL, Dandekar PK, Nightingale CH, et al. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem[J]. J Clin Pharmacol,2003,43(10):1116-1123.
[26]Shea KM, Cheatham SC, Smith DW, et al.Comparative pharmacodynamics of intermittent and prolonged infusions of piperacillin/tazobactam using Monte Carlo simulations and steady-state pharmacokinetic data from hospitalized patients[J]. Ann Pharmacother, 2009,43(11):1747-1754.
[27]Wang H, Zhang B, Ni Y, et al. Pharmacodynamic target attainment of seven antimicrobials against Gram-negative bacteria collected from China in 2003 and 2004[J]. Int J Antimicrob Agents, 2007,30(5):452-457.
[28]Cheatham SC, Kays MB, Smith DW, et al. Steady-state pharmacokinetics and pharmacodynamics of meropenem in hospitalized patients[J]. Pharmacotherapy, 2008,28(6):691-698.
[29]Eguchi K, Kanazawa K, Shimizudani T, et al. Experimental verification of the efficacy of optimized two-step infusion therapy with meropenem using an in vitro pharmacodynamic model and Monte Carlo simulation[J]. J Infect Chemother,2010,16(1):1-9.
[30]Roberts JA, Kirkpatrick CM, Roberts MS, et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution[J]. J Antimicrob Chemother,2009,64(1):142-150.
[31]Abdul-Aziz MH, Lipman J, Mouton JW, et al.Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development[J]. Semin Respir Crit Care Med,2015, 36(1):136-153.
[32]Dhanani J, Roberts JA, Chew M, et al. Antimicrobial chemotherapy and lung microdialysis: a review[J]. Int J Antimicrob Agents, 2010,36(6):491-500.
[33]Thalhammer F, Horl WH. Pharmacokinetics of meropenem in patients with renal failure and patients receiving renal replacement therapy[J]. Clin Pharmacokinet, 2000,39(4):271-279.
[34]Martinez MN, Papich MG, Drusano GL. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target[J]. Antimicrob Agents Chemother, 2012,56(6):2795-2805.
[35]Drusano GL, Lodise TP, Melnick D, et al. Meropenem penetration into epithelial lining fluid in mice and humans and delineation of exposure targets[J]. Antimicrob Agents Chemother,2011,55(7):3406-3412.
[36]Louie A, Liu W, Fikes S, et al. Impact of meropenem in combination with tobramycin in a murine model of pseudomonas aeruginosa pneumonia[J]. Antimicrob Agents Chemother,2013,57(6):2788-2792.
[37]Lodise TP, Sorgel F, Melnick D, et al.Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia[J]. Antimicrob Agents Chemother,2011,55(4):1606-1610.
[38]Duszynska W. Pharmacokinetic-pharmacodynamic modelling of antibiotic therapy in severe sepsis[J]. Anaesthesiol Intensive Ther,2012,44(3):158-164. |