[1]许军峰, 张浪, 田骞, 等. 针刺对脑缺血再灌注大鼠皮质缺血半暗带细胞超微结构的影响[J]. 长春中医药大学学报, 2016, 32(3): 455-457.
[2]Primdahl J, Clausen J, Hrslev-Petersen K. Results from systematic screening for cardiovascular risk in outpatients with rheumatoid arthritis in accordance with the EULAR recommendations[J]. Ann Rheum Dis, 2013, 72(11): 1771-1776.
[3]Rosales-Alexander JL, Salvatierra J, Llorca J, et al. Cardiovascular risk assessment in rheumatoid arthritis: impact of the EULAR recommendations on a national calibrated score risk index[J]. Clin Exp Rheumatol, 2014, 32(2): 237-242.
[4]Eriksson JK, Jacobsson L, Bengtsson K, et al. Is ankylosing spondylitis a risk factor for cardiovascular disease, and how do these risks compare with those in rheumatoid arthritis [J]? Ann Rheum Dis, 2017, 76(2): 364-370.
[5]Sakai R, Hirano F, Kihara M, et al. High prevalence of cardiovascular comorbidities in patients with rheumatoid arthritis from a population-based cross-sectional study of a Japanese health insurance database[J]. Mod Rheumatol, 2016, 26(4):522-528.
[6]Lindhardsen J,Ahlehoff O,Gislasen Gh, 等. 类风湿性关节炎患者脑卒中和心房颤动风险将增加[J]. 心血管病学进展, 2013, 34(2): 296.
[7]葛秀兰, 冯志杰. 类风湿性关节炎并发尿崩症、脑梗塞、间质性肺炎及虹膜炎(附1例报告)[J]. 河北医学院学报, 1989, 10(3): 173,175.
[8]王鹏, 余旻, 王嘉军. 基质金属蛋白酶-9与全身炎症反应综合征研究进展[J]. 现代生物医学进展, 2012, 12(5): 998-1000.
[9]Gan X, Wong B, Wright SD, et al. Production of matrix metalloproteinase-9 in CaCO-2 cells in response to inflammatory stimuli[J]. J Interferon Cytokine Res, 2001, 21(2): 93-98.
[10]Mudge SJ, Paizis K, Auwardt RB, et al. Activation of nuclear factor-kappa B by podocytes in the autologous phase of passive Heymann nephritis[J]. Kidney Int, 2001, 59(3): 923-931.
[11]Li W, Li H, Bocking AD, et al. Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-NFKB and MAPK1/3 pathway[J]. Biol Reprod, 2010, 83(3): 481-487.
[12]Long M, Park SG, Strickland I, et al. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor[J]. Immunity, 2009, 31(6): 921-931.
[13]Venet F, Pachot A, Debard AL, et al. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism[J]. J Immunol, 2006, 177(9): 6540-6547.
[14]Shono Y, Tuckett AZ, Ouk S, et al. A small-molecule c-Rel inhibitor reduces alloactivation of T cells without compromising antitumor activity[J]. Cancer Discov, 2014, 4(5): 578-591.
[15]Sasano H, Suzuki T, Miki Y, et al. Intracrinology of estrogens and androgens in breast carcinoma[J]. J Steroid Biochem Mol Biol, 2008, 108(3-5): 181-185.
[16]Uhlirova M, Bohmann D. JNK‐ and Fos‐regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila[J]. Embo J, 2006, 25(22): 5294-5304.
[17]Meisser A, Chardonnens D, Campana A, et al. Effects of tumour necrosis factor-alpha, interleukin-1 alpha, macrophage colony stimulating factor and transforming growth factor beta on trophoblastic matrix metalloproteinases[J]. Mol Human Rep, 1999, 5(3): 252-260.
[18]Han YP, Tuan TL, Hughes M, et al. Transforming growth factor-beta - and tumor necrosis factor-alpha-mediated induction and proteolytic activation of MMP-9 in human skin[J]. J Biol Chem, 2001, 276(25): 22341-223450.
[19]Bain JM, Ziegler A, Yang Z, et al. TGFβ1 Stimulates the over-production of white matter astrocytes from precursors of the “brain marrow” in a rodent model of neonatal encephalopathy[J]. Plos One, 2012, 5(3): e9567.
[20]Sen T, Chatterjee A. 8526 POSTER fibronectin induces matrix metalloproteinase-9 (MMP-9) in human laryngeal carcinoma cells by involving multiple signaling pathways[J]. Biochimie, 2011, 47(10): 1422-1434.
[21]Rosenberg GA, Cunningham LA, Wallace J, et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures[J]. Brain Res, 2001, 893(2): 104-112.
[22]Roberts CA, Dickinson AK, Taams LS. The interplay between monocytes/macrophages and CD4+T cell subsets in rheumatoid arthritis[J]. Front Immunol, 2015, 2015 Nov 19;6:571. doi: 10.3389/fimmu.2015.00571. eCollection 2015.
[23]Xie L, Choudhury GR, Winters A, et al. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10[J]. Eur J Immunol, 2015, 45(1): 180-191.
[24]Ebner F, Brandt C, Thiele P, et al. Microglial activation milieu controls regulatory T cell responses[J]. J Immunol, 2013, 191(11): 5594-5602.
[25]Liu G, Ma H, Qiu L, et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+T cells in mice[J]. Immunol Cell Biol, 2011, 89(1): 130-142.
[26]Tiemessen MM, Jagger AL, Evans HG, et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages[J]. Proc Natl Acad Sci USA, 2008, 104(49): 19446-19451.
[27]Soroosh P, Doherty TA, Duan W, et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance[J]. J Exp Med, 2013, 210(4): 775-788.
[28]Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke[J]. Nat Med, 2009, 15(2): 192-199.
[29]Klebe D, Mcbride D, Flores JJ, et al. Modulating the immune response towards a neuroregenerative peri-injury milieu after cerebral hemorrhage[J]. J Neuroimmune Pharmacol, 2015, 10(4): 576-586.
[30]Brea D, Agulla J, Rodriguez-Yanez M, et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia[J]. J Cell Mol Med, 2014, 18(8): 1571-1579.
[31]Savage ND, de Boer T, Walburg KV, et al. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1[J]. J Immunol, 2008, 181(3): 2220-2226.
[32]Patel SR. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses[J]. Nat Immunol, 2007, 8(10): 1086-1094.
[33]Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011, 11(11): 723-737.
[34]Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease[J]. Nat Rev Immunol, 2011, 11(11): 775-787.
[35]Brea D, Sobrino T, Ramos-Cabrer P, et al. Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia[J]. Cerebrovasc Dis, 2009, 27 Suppl 1: 48-64.
[36]Yan J, Greer JM, Etherington K, et al. Immune activation in the peripheral blood of patients with acute ischemic stroke[J]. J Neuroimmunol, 2009, 206(1-2): 112-117.
[37]O'byrne PM, Inman MD, Adelroth E. Reassessing the Th2 cytokine basis of asthma[J]. Trends Pharmacol Sci, 2004, 25(5): 244-248.
[38]Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity[J]. Matrix Biol, 2007, 26(8): 587-596.
[39]Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke[J]. Front Cell Neuro,2016,10(305):56.
[40]Kohama Y. Discovery of immature thymocyte proliferation factor[J]. Yakugaku Zasshi, 2006,126(3): 145-160.
[41]Spits H. Development of alphabeta T cells in the human thymus[J]. Nat Rev Immunol, 2002, 2(10): 760-772.
[42]周洲, 冯娟, 王宪. 调节性T细胞的分化及其影响因素[J]. 生物物理学报, 2012, 28(2): 93-111.
[43]Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage[J]. Nat Immunol, 2007, 8(5): 457-462.
[44]D'cruz LM, Klein L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling[J]. Nat Immunol, 2005, 6(11): 1152-1159.
[45]Karimi S, Chattopadhyay S, Chakraborty NG. Manipulation of regulatory T cells and antigen-specific cytotoxic T lymphocyte-based tumour immunotherapy[J]. Immunology, 2015, 144(2): 186-196.
[46]Ivanova EA, Orekhov AN. T helper lymphocyte subsets and plasticity in autoimmunity and cancer: an overview[J]. Biomed Res Int, 2015, 2015: 327470.
[47]Pearce EJ, Caspar P, Grzych JM, et al. Pillars article: downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J. Exp. Med. 1991. 173: 159-166[J]. J Immunol, 2012, 189(3): 1104-1111.
[48]Shimoda K, Van Deursen J, Sangster MY, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene[J]. Nature, 1996, 380(6575): 630-633.
[49]Iwakura Y, Ishigame H, Saijo S, et al. Functional specialization of interleukin-17 family members[J]. Immunity, 2011, 34(2): 149-162.
[50]Murdaca G, Colombo BM, Puppo F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases[J]. Intern Emerg Med, 2011, 6(6): 487-495.
[51]Fainboim L, Arruvito L. Mechanisms involved in the expansion of Tregs during pregnancy: role of IL-2/STAT5 signalling[J]. J Reprod Immunol, 2011, 88(2): 93-98.
[52]Gu AD, Wang Y, Lin L, et al. Requirements of transcription factor Smad-dependent and -independent TGF-beta signaling to control discrete T-cell functions[J]. Proc Natl Acad Sci U S A, 2012, 109(3): 905-910.
[53]Lal G, Zhang N, Van Der Touw W, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation[J]. J Immunol, 2009, 182(1): 259-273.
[54]Tao JH, Cheng M, Tang JP, et al. Foxp3, Regulatory T cell, and autoimmune diseases[J]. Inflammation, 2017, 40(1):328-339.
[55]Ikeda S, Saijo S, Murayama MA, et al. Excess IL-1 signaling enhances the development of Th17 cells by downregulating TGF-beta-induced Foxp3 expression[J]. J Immunol, 2014, 192(4): 1449-1458.
[56]Banerjee DK, Dhodapkar MV, Matayeva E, et al. Expansion of FOXP3 high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients[J]. Blood, 2006, 108(8): 2655-2661.
[57]Nie H, Zheng Y, Li R, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis[J]. Nat Med, 2013, 19(3): 322-328.
[58]Li N, Ma T, Han J, et al. Increased apoptosis induction in CD4+ CD25+ Foxp3+ T cells contributes to enhanced disease activity in patients with rheumatoid arthritis through IL-10 regulation[J]. Eur Rev Med Pharmacol Sci, 2014, 18(1): 78-85.
[59]Li Q, Wang Y, Yu F, et al. Peripheral Th17/Treg imbalance in patients with atherosclerotic cerebral infarction[J]. Int J Clin Exp Pathol, 2013, 6(6): 1015-1027.
[60]Pe VDS, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)[J]. Crit Rev Biochem Mol Biol, 2002, 37(6): 375-536.
[61]Gasche Y, Soccal PM, Kanemitsu M, et al. Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain[J]. Frontiers in Bioscience, 2006, 11(2): 1289-1301.
[62]Chang DI, Hosomi N, Lucero J, et al. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2003, 23(12): 1408-1419.
[63]Munbryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease[J]. J Cereb Blood Flow & Metab, 2005, 18(11): 1163-1172.
[64]Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia[J]. J Neuro Sci, 2001, 21(19): 7724-7732.
[65]Gidday JM,Gasche YG, Copin JC, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia[J]. Ajp Heart & Circulatory Physiology, 2005, 289(2): 558-568.
[66]Yang Y, Estrada EY, Thompson JF, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat[J]. J Cereb Blood Flow Metab, 2007, 27(27): 697-709.
[67]Horstmann S, Kalb P, Koziol J, et al. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies[J]. Stroke, 2003, 34(9): 2165-2170.
[68]Vukasovic I, Tesijakuna A, Topic E, et al. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes[J]. Clin Chem Lab Med, 2006, 44(4): 428-434.
[69]Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke[J]. Circulation, 2003, 107(4): 598-603.
[70]Maier CM, Hsieh L, Yu F, et al. Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia[J]. Stroke, 2004, 35(5): 1169-1174.
[71]Choi EY, Santoso S, Chavakis T. Mechanisms of neutrophil transendothelial migration[J]. Front Biosci, 2009, 14(5): 1596-1605.
[72]Nguyen HX, O'barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha[J]. J Neurochem, 2007, 102(3): 900-912.
[73]Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death[J]. Science, 2002, 297(5584): 1186-1190.
[74]张浩. 转化生长因子β1通过ROS依赖的ERK-NF-KB通路对血管平滑肌细胞产生MMP9的影响[D]. 武汉大学, 2013.
[75]Long M, Park SG, Strickland I, et al. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor[J]. Immunity, 2009, 31(6): 921-931.
[76]Pedros C, Gaud G, Bernard I, et al. An epistatic interaction between Themis1 and Vav1 modulates regulatory T cell function and inflammatory bowel disease development[J]. J Immunol, 2015, 195(4): 1608-1606.
[77]Kim EY, Moudgil KD. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines[J]. Cytokine, 2017 Apr 21. pii: S1043-4666(17)30097-2. doi: 10.1016/j.cyto.2017.04.012. [Epub ahead of print]
[78]Housley WJ, Adams CO, Nichols FC, et al. Natural but not inducible regulatory T cells require TNF-alpha signaling for in vivo function[J]. J Immunol, 2011, 186(12): 6779-6787.
[79]Mccann FE, Perocheau DP, Ruspi G, et al. Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis[J]. Arthritis Rheumatol, 2014, 66(10): 2728-2738.
[80]Sun L, Diamond ME, Ottaviano AJ, et al. Transforming growth factor-β1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression[J]. Mol Cancer Res, 2008, 6(1): 10-20.
[81]Tobar N, Villar V, Santibanez JF. ROS-NFkappaB mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion[J]. Mol Cell Biochem, 2010, 340(1/2): 195-202.
[82]Giacoppo S, Galuppo M, Iori R, et al. (RS)-glucoraphanin purified from Tuscan black kale and bioactivated with myrosinase enzyme protects against cerebral ischemia/reperfusion injury in rats[J]. Fitoterapia, 2014, 99: 166-177.
[83]Mao X, Wu Y, Diao H, et al. Interleukin-6 promotes systemic lupus erythematosus progression with Treg suppression approach in a murine systemic lupus erythematosus model[J]. Clin Rheumatol, 2014, 33(11): 1585-1593.
[84]Lee HT, Liu SP, Lin CH, et al. A crucial role of CXCL14 for promoting regulatory T cells activation in stroke[J]. Theranostics, 2017, 7(4): 855-875.
[85]Ren X, Akiyoshi K, Vandenbark A A, et al. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke[J]. Metab Brain Dis, 2011, 26(1): 87-90.
[86]Kleinschnitz C, Wiendl H. Con: Regulatory T cells are protective in ischemic stroke[J]. Stroke, 2013, 44(8): e87-88.
[87]Li P, Gan Y, Sun BL, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia[J]. Ann Neurol, 2013, 74(3): 458-471. |