[1]Hosohata K.Role of oxidative stress in drug-induced kidney injury[J].Int J Mol Sci, 2016, 17(11):pii: E1826.
[2]Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: The PICARD experience[J]. Kidney Int, 2004, 66(4): 1613-1621.
[3]Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients-A multinational, multicenter study[J]. JAMA, 2005, 294(7): 813-818.
[4]Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury: The ELAIN randomized clinical trial[J]. JAMA, 2016, 315(20): 2190.
[5]Uchino S. The epidemiology of acute renal failure in the world[J]. Curr Opin Crit Care, 2006, 12(6): 538.
[6]Yang Y, Song M, Liu Y, et al.Renoprotective approaches and strategies in acute kidney injury[J]. Pharmacol Ther, 2016, 163: 58-73.
[7]Gary NE, Buzzeo L, Salaki J, et al. Gentamicin-associated acute renal failure[J]. Arch Intern Med, 1976, 136(10): 1101-1104.
[8]Suzuki T, Yamaguchi H, Ogura J, et al. Megalin contributes to kidney accumulation and nephrotoxicity of colistin[J]. Antimicrob Agents Chemother, 2013, 57(12): 6319-6324.
[9]Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, et al. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity[J]. Crit Rev Toxicol, 2011, 41(10): 803-821.
[10]Ozkok A,Edelstein CL.Pathophysiology of cisplatin-induced acute kidney injury[J]. Biomed Res Int, 2014, 2014: 967826.
[11]连燕娜,高丽萍. 益气补肾方药对顺铂致大鼠肾毒性及顺铂抗肿瘤活性的影响[J].中国临床药理学与治疗学, 2016, 21(1): 50-54.
[12]Aleksa K, Matsell D, Krausz K, et al. Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity[J]. Pediatric Nephrology, 2005, 20(7): 872-885.
[13]Whiting PH, Thomson AW, Blair JT, et al. Experimental cyclosporin A nephrotoxicity[J]. Br J Exp Pathol, 1982, 63(1): 88-94.
[14]Wijnen RM, Ericzon BG, Tiebosch AT, et al. Toxicology of FK506 in the cynomolgus monkey: a clinical, biochemical, and histopathological study[J]. Transpl Int,1992, 5 Suppl 1(5 Suppl 1): S454-458.
[15]Izzedine H, Launay-Vacher V,Deray G. Antiviral drug-induced nephrotoxicity[J]. Am J Kidney Dis, 2005, 45(5): 804-817.
[16]程诗佳,王崇. 替比夫定、恩替卡韦、替诺福韦治疗慢性乙型肝炎患者的肾脏安全性及有效性的对比[J]. 临床肝胆病杂志, 2015,31(7): 1054.
[17]Depierreux M, Damme BV, Houte KV, et al.Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs[J]. Am J Kidney Dis, 1994, 24(2): 172-180.
[18]Inoue M, Akimoto T, Saito O, et al. Successful relatively low-dose corticosteroid therapy for diclofenac-induced acute interstitial nephritis with severe renal failure[J]. Clin Exp Nephrol, 2008, 12(4): 296-299.
[19]Jones B, Hewson E,Price A. Acute interstitial nephritis due to omeprazole[J]. Lancet, 1994, 344(8928): 1017-1018.
[20]Nagai J,Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosisdependent and endocytosis-independent pathways[J]. Biochem Pharmacol, 2014, 90(4): 331-337.
[21]Moestrup SK, Cui S, Vorum H, et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs[J]. J Clin Invest, 1995,96(3):1404-1413.
[22]Tauris J, Christensen EI, Nykjaer A, et al. Cubilin and megalin co-localize in the neonatal inner ear[J]. Audiol Neurootol, 2009, 14(4): 267-278.
[23]Lebeau C, Arlt VM, Schmeiser HH, et al. Aristolochic acid impedes endocytosis and induces DNA adducts in proximal tubule cells[J]. Kidney Int, 2001, 60(4): 1332-1342.
[24]Ciarimboli G, Deuster D, Knief A, et al. Organic Cation Transporter 2 Mediates Cisplatin-Induced Oto-and Nephrotoxicity and Is a Target for Protective Interventions[J].Am J Pathol, 2010, 176(3): 1169-1180.
[25]Yang Y, Liu H, Liu F, et al. Mitochondrial dysregulation and protection in cisplatin nephrotoxicity[J]. Arch Toxicol, 2014, 88(6): 1249-1256.
[26]Visarius TM, Putt DA, Schare JM, et al. Pathways of glutathione metabolism and transport in isolated proximal tubular cells from rat kidney[J]. Biochem Pharmacol, 1996, 52(2): 259-272.
[27]Emma F, Montini G, Parikh SM, et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury[J]. Nat Rev Nephrol, 2016, 12(5): 267-280.
[28]Morales AI, Detaille D, Prieto M, et al. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondriadependent pathway[J]. Kidney Int, 2010, 77(10): 861-869.
[29]Lopez-Novoa JM, Quiros Y, Vicente L, et al. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view[J]. Kidney Int, 2011, 79(1): 33-45.
[30]Zhan M, Brooks C, Liu F, et al. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology[J]. Kidney Int, 2013, 83(4): 568-581.
[31]Brooks C, Wei Q, Cho SG, et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models[J]. J Clin Invest, 2009, 119(5): 1275-1285.
[32]Ishimoto Y,Inagi R. Mitochondria: a therapeutic target in acute kidney injury[J]. Nephrol Dial Transplant, 2016, 31(7): 1062-1069.
[33]Zhao C, Chen Z, Qi J, et al. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function[J]. Oncotarget, 2017, 8(13): 20988-21000.
[34]Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates complex I disease biology[J]. Cell, 2008, 134(1): 112-123.
[35]Ralto KM,Parikh SM. Mitochondria in acute kidney injury[J]. Semin Nephrol, 2016, 36(1): 8-16.
[36]Morigi M,Perico L, Rota C, et al. Sirtuin 3dependent mitochondrial dynamic improvements protect against acute kidney injury[J]. J Clin Invest, 2015, 125(2): 715-726.
[37]Tran M, Tam D, Bardia A, et al. PGC-1 alpha promotes recovery after acute kidney injury during systemic inflammation in mice[J]. J Clin Invest, 2011, 121(10): 4003-4014.
[38]Rasbach KA,Schnellmann RG. PGC-1 alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury[J]. Biochem Biophys Res Commun, 2007, 355(3): 734-739.
[39]Herlitz LC, Mohan S, Stokes MB, et al. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities[J]. Kidney Int, 2010, 78(11): 1171-1177.
[40]Ramamoorthy H, Abraham P,Isaac B. Mitochondrial dysfunction and electron transport chain complex defect in a rat model of tenofovir disoproxil fumarate nephrotoxicity[J]. J Biochem Mol Toxicol, 2014, 28(6): 246-255.
[41]Tanji N, Tanji K, Kambham N, et al. Adefovir nephrotoxicity: Possible role of mitochondrial DNA depletion[J]. Human Pathology, 2001, 32(7): 734-740.
[42]Jiang Z, Bao Q, Sun L, et al. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity[J]. Toxicol Appl Pharmacol, 2013, 266(2): 198-203.
[43]Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: Evaluation of oxidant stress and plasma membrane integrity[J]. Kidney Int, 2003, 64(1): 128-139.
[44]Zager RA, Johnson AC, Hanson SY. Proximal tubular cytochrome c efflux: determinant, and potential marker, of mitochondrial injury[J]. Kidney Int, 2004, 65(6): 2123-2134.
[45]Small DM,Gobe GC. Cytochrome c: potential as a noninvasive biomarker of drug-induced acute kidney injury[J]. Expert Opin Drug Metab Toxicol,2012, 8(6): 655-664.
[46]Funk JA,Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury[J]. Am J Physiol Renal Physiol, 2012, 302(7): F853-864.
[47]Whitaker RM, Korrapati MC, Stallons LJ, et al. Urinary ATP synthase subunit beta is a novel biomarker of renal mitochondrial dysfunction in acute kidney injury[J]. Toxicol Sci, 2015, 145(1): 108-117.
[48]Whitaker RM, Stallons LJ, Kneff JE, et al. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury[J]. Kidney Int, 2015, 88(6): 1336-1344.
[49]Hu Q, Ren J, Wu J, et al. Urinary mitochondrial DNA levels identify acute kidney injury in surgical critical illness patients[J]. Shock, 2017, 48(1): 11-17.
[50]何睦, 姚卫峰, 蔡秀江, 等.代谢组学在肝肾损伤研究中的应用[J].中国临床药理学与治疗学, 2012, 17(8): 924-920.
[51]Wen XY, Peng ZY, Li YJ, et al.One dose of cyclosporine A is protective at initiation of folic acidinduced acute kidney injury in mice[J]. Nephrol Dial Transplant, 2012, 27(8): 3100-3109.
[52]Wang Z, Bao H, Ge Y, et al. Pharmacological targeting of GSK3beta confers protection against podocytopathy and proteinuria by desensitizing mitochondrial permeability transition[J]. Br J Pharmacol, 2015, 172(3): 895-909.
[53]Plotnikov EY, Chupyrkina AA, Jankauskas SS, et al. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion[J]. Biochim Biophys Acta, 2011, 1812(1): 77-86.
[54]Jankauskas SS, Plotnikov EY, Morosanova MA, et al. Mitochondria-targeted antioxidant SkQR1 ameliorates gentamycin-induced renal failure and hearing loss[J]. Biochemistry (Mosc), 2012, 77(6): 666-670.
[55]Mukhopadhyay P, Horvath B, Zsengeller Z, et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy[J]. Free Radic Biol Med, 2012, 52(2): 497-506.
[56]Brenmoehl J,Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion, 2013, 13(6): 755-761.
[57]Funk JA,Schnellmann RG. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1alpha activation following ischemia-reperfusion injury[J].Toxicol Appl Pharmacol, 2013, 273(2): 345-354.
[58]Wills LP, Trager RE, Beeson GC, et al. The beta(2)-Adrenoceptor Agonist Formoterol Stimulates Mitochondrial Biogenesis[J]. J Pharmacol Exp Ther, 2012, 342(1): 106-118.
[59]Jesinkey SR, Funk JA, Stallons LJ, et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2014, 25(6): 1157-1162. |