[1]Teorell T. Kinetics of distribution of substances administered to the body, I: the extravascular modes of administration[J]. Arch Int Pharmaco Thera, 1937, 57: 205-225.
[2]Bischoff K, Dedrick R, Zaharko D, et al. Methotrexate pharmacokinetics[J]. J Pharmac Sci, 1971, 60(8): 1128-1133.
[3]Bischoff K, Dedrick R. Thiopental pharmacokinetics[J]. J Pharmac Sci, 1968, 57(8): 1346-1351.
[4]Harrison LI, Gibaldi M. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans[J]. J Pharmac Scie, 1977, 66(12): 1679-1683.
[5]Grimstein M, Yang Y, Zhang X, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. food and drug administration's office of clinical pharmacology[J]. J Pharm Sci, 2019, 108(1): 21-25.
[6]Sato M, Ochiai Y, Kijima S, et al. Quantitative modeling and simulation in PMDA: A Japanese regulatory perspective[J]. CPT Pharmacometrics Syst Pharmacol, 2017, 6(7): 413-415.
[7]European Medicines Agency. Guideline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation[EB/OL]. [2019-12-21]. https://www.ema.europa.eu/en/documents/scientific-guideline/ guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf.
[8]U.S. Food and Drug Administration. Physiologically based pharmacokinetic analyses-format and content guidance for industry[EB/OL]. [2019-12-21]. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM531207.pdf.
[9]U.S. Food and Drug Administration. Physiologically based pharmacokinetic analyses-format and content guidance for industry[EB/OL]. [2019-12-21]. https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm531207.pdf.
[10]Luzon E, Blake K, Cole S, et al. Physiologically based pharmacokinetic modeling in regulatory decision-making at the European medicines agency[J]. Clin Pharmacol Thera, 2017, 102(1): 98-105.
[11]Shi J, Zha W. Predicting human pharmacokinetics: physiologically based pharmacokinetic modeling and in silico ADME prediction in early drug discovery[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(1): 135-137.
[12]Varma MV, Pang KS, Isoherranen N, et al. Dealing with the complex drug-drug interactions: towards mechanistic models[J]. Biopharm Drug Dispos, 2015, 36(2): 71-92.
[13]U.S.Food and Drug Administration.Cabazitaxel clinical pharmacology biopharmaceutics review(s)[EB/OL].[2019-12-21].https://www.accessdata.fda.gov/drugsatfda-docs/nda/2010/201023s201000ClinPharmR.pdf.
[14]Miller NA, Reddy MB, Heikkinen AT, et al. Physiologically based pharmacokinetic modelling for first-in-human predictions: an updated model building strategy illustrated with challenging industry case studies[J]. Clin Pharmaco, 2019, 58(6): 727-746.
[15]Yoshida K, Budha N, Jin JY. Impact of physiologically based pharmacokinetic models on regulatory reviews and product labels: Frequent utilization in the field of oncology[J]. Clin Pharmacol Thera, 2017, 101(5): 597-602.
[16]高广花, 魏春敏. 生理药代动力学模型在新药研发及监管领域的应用现状[J]. 中国临床药理学杂志, 2018, 34(19): 2387-2392.
[17]李丽, 杨进波. 基于生理的药代动力学模型在创新药临床研发中的应用进展[J]. 中国临床药理学杂志, 2017, 33(17): 1728-1732.
[18]李丽, 杨进波. 基于生理的口服吸收模型在仿制药研发中的应用和趋势[J]. 中国临床药理学与治疗学, 2017, 22(9): 961-965.
[19]Yuan D, He H, Wu Y, et al. Physiologically based pharmacokinetic modeling of nanoparticles[J]. J Pharm Sci, 2019, 108(1): 58-72.
[20]Lin L, Wong H. Predicting oral drug absorption: mini review on physiologically-based pharmacokinetic models[J]. Pharmaceutics, 2017, 9(4). doi: 10.3390/pharmaceutics9040041.
[21]刘宏锐, 陈芳, 相小强, 等. 生理药代动力学建模在药剂学中的应用[J]. 中国医药工业杂志, 2019, 50(4): 383-391.
[22]Taskar KS, Pilla Reddy V, Burt H, et al. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: Current capabilities, case studies, future opportunities, and recommendations[J]. Clin Pharmacol Thera, 2019, doi: 10.1002/cpt.1693.
[23]Min JS, Bae SK. Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modeling[J]. Arch Pharm Res, 2017, 40(12): 1356-1379.
[24]李丽, 杨进波. 药物相互作用临床研究策略及基于生理的药动学模型应用进展[J]. 中国临床药理学与治疗学, 2019(10): 1085-1091.
[25]Smits A, De Cock P, Vermeulen A, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation in neonatal drug development: how clinicians can contribute[J]. Exp Opin Drug Metab Toxicol, 2019, 15(1): 25-34.
[26]Yellepeddi V, Rower J, Liu X, et al. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development[J]. Clin Pharmacokinet, 2019, 58(1): 1-13.
[27]Chetty M, Johnson TN, Polak S, et al. Physiologically based pharmacokinetic modelling to guide drug delivery in older people[J]. Adv Drug Del Rev, 2018, 135: 85-96.
[28]Alsmadi MM, Idkaidek N. Optimization of drugs pharmacotherapy during pregnancy using physiologically based pharmacokinetic models-an update[J]. Curr Drug Metab, 2018, 19(12): 972-978.
[29]郑晓洁, 李思泽, 袁雅文, 等. 儿童生理药代动力学模型及其在儿科药物研究中的应用[J]. 药学学报, 2020, 55(1): 38-44.
[30]施意凝, 谢潘潘, 史爱欣. 儿童生理药代动力学模型与模拟在药物研发领域的应用分析[J]. 中国临床药理学杂志, 2018, 34(12): 1484-1488.
[31]鲁娣, 宋殿荣. 妊娠期生理药代动力学模型的研究及应用现状[J]. 中国临床药理学杂志, 2018, 34(23): 2784-2786.
[32]吴倩, 史爱欣. 生理药代动力学模型及其在妊娠妇女用药研究中的应用现状[J]. 中国临床药理学杂志, 2017, 33(21): 2209-2211.
[33]魏树礼,张强. 生物药剂学与药物动力学(第2版) [M]. 北京: 北京大学医学出社, 2004.
[34]Krauss M, Tappe K, Schuppert A, et al. Bayesian population physiologically- based pharmacokinetic (pbpk) approach for a physiologically realistic characterization of interindividual variability in clinically relevant populations[J]. PloS One, 2015, 10(10): e0139423.
[35]Tsamandouras N, Dickinson G, Guo Y, et al. Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population PBPK approach[J]. Pharmac Res, 2015, 32(6): 1864-1883.
[36]Wendling T, Dumitras S, Ogungbenro K, et al. Application of a bayesian approach to physiological modelling of mavoglurant population pharmacokinetics[J]. J Pharmacokinet Pharmacodyn, 2015, 42(6): 639-657.
[37]Dallmann A, Ince I. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women[J]. Clin Pharmacokinet, 2017, 56(12): 1525-1541.
[38]Offman E, Phipps C, Edginton AN. Population physiologically-based pharmacokinetic model incorporating lymphatic uptake for a subcutaneously administered pegylated peptide[J]. In silico Pharmacol, 2016, 4(1): 3.
[39]Takashima T, Kitamura S, Wada Y, et al. PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me[J]. J Nucl Med, 2012, 53(5): 741-748.
[40]Feng S, Shi J, Parrott N, et al. Combining 'bottom-up' and 'top-down' methods to assess ethnic difference in clearance: bitopertin as an example[J]. Clin Pharmacokinet, 2016, 55(7): 823-832.
[41]Zamek-Gliszczynski MJ, Lee CA, Poirier A, et al. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans[J]. Clin Pharmacol Therap, 2013, 94(1): 64-79.
[42]Einolf HJ, Zhou J, Won C, et al. A physiologically-based pharmacokinetic modeling approach to predict drug-drug interactions of sonidegib (LDE225) with perpetrators of CYP3A in cancer patients[J]. Drug Metab Dispos, 2017, 45(4): 361-374.
[43]Goel V, Hurh E, Stein A, et al. Population pharmacokinetics of sonidegib (LDE225), an oral inhibitor of hedgehog pathway signaling, in healthy subjects and in patients with advanced solid tumors[J]. Cancer Chemother Pharmacol, 2016, 77(4): 745-755.
[44]Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives[J]. Pharmac Research, 1999, 16(2): 176-185.
[45]Kuepfer L, Niederalt C, Wendl T, et al. Applied concepts in PBPK modeling: How to build a PBPK/PD model[J]. CPT Pharmacometrics Syst Pharmacol, 2016, 5(10): 516-531.
[46]Alqahtani S, Kaddoumi A. Development of physiologically based pharmacokinetic/pharmacodynamic model for indomethacin disposition in pregnancy[J]. PloS one, 2015, 10(10): e0139762.
[47]Darakjian LI, Kaddoumi A. Physiologically based pharmacokinetic/ pharmacodynamic model for caffeine disposition in pregnancy[J]. Mol Pharm, 2019, 16(3): 1340-1349.
[48]Alqahtani S, Kaddoumi A. Development of a physiologically based pharmacokinetic/pharmacodynamic model to identify mechanisms contributing to entacapone low bioavailability[J]. Biopharm Drug Dispos, 2015, 36(9): 587-602.
[49]Mukherjee D, Zha J, Menon RM, et al. Guiding dose adjustment of amlodipine after co-administration with ritonavir containing regimens using a physiologically- based pharmacokinetic/pharmacodynamic model[J]. J Pharmacokinet Pharmacodyn, 2018, 45(3): 443-456.
[50]Brochot A, Zamacona M, Stockis A. Physiologically based pharmacokinetic/ pharmacodynamic animal-to-man prediction of therapeutic dose in a model of epilepsy[J]. Basic Clin Pharmacol Toxicol, 2010, 106(3): 256-262.
[51]Alqahtani S, Kaddoumi A. Development of a physiologically based pharmacokinetic/pharmacodynamic model to predict the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics represented by receptor/transporter occupancy of central nervous system drugs[J]. Clin Pharmacokinet, 2016, 55(8): 957-969.
[52]Chen Y, Zhao K, Liu F, et al. Predicting antitumor effect of deoxypodophyllotoxin in NCI-H460 tumor-bearing mice on the basis of in vitro pharmacodynamics and a physiologically based pharmacokinetic-pharmacodynamic model[J]. Drug Metab Dispos, 2018, 46(6): 897-907.
[53]Mandema JW, Gibbs M, Boyd RA, et al. Model-based meta-analysis for comparative efficacy and safety: application in drug development and beyond[J]. Clin Pharmacol Thera, 2011, 90(6): 766-769.
[54]Badee J, Achour B, Rostami-Hodjegan A, et al. Meta-analysis of expression of hepatic organic anion-transporting polypeptide (OATP) transporters in cellular systems relative to human liver tissue[J]. Drug Metab Dispos, 2015, 43(4): 424-432.
[55]Burt HJ, Riedmaier AE, Harwood MD, et al. Abundance of hepatic transporters in caucasians: A meta-analysis[J]. Drug Metab Dispos, 2016, 44(10): 1550-1561.
[56]Harwood MD, Zhang M. The regional-specific relative and absolute expression of gut transporters in adult caucasians: A meta-analysis[J]. Drug Metab Dispos, 2019, 47(8): 854-864.
[57]Ladumor MK, Thakur A, Sharma S, et al. A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation[J]. Sci Rep, 2019, 9(1): 9709.
[58]Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: A meta-analysis[J]. Drug Metab Dispos, 2014, 42(8): 1349-1356.
[59]Abduljalil K, Johnson TN, Rostami-Hodjegan A. Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition[J]. Clin Pharmacokinet, 2018, 57(9): 1149-1171.
[60]Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on the growth and composition of fetal organs[J]. Clin Pharmacokinet, 2019, 58(2): 235-262.
[61]Zang X, Kagan L. Physiologically-based modeling and interspecies prediction of paclitaxel pharmacokinetics[J]. J Pharmacokinet Pharmacodyn, 2018, 45(4): 577-592.
[62]Zhu X, Trueman S, Straubinger RM, et al. Physiologically-based pharmacokinetic and pharmacodynamic models for gemcitabine and birinapant in pancreatic cancer xenografts[J]. J Pharmacokinet Pharmacodyn, 2018, 45(5): 733-746.
[63]He H, Liu C, Wu Y, et al. A multiscale physiologically-based pharmacokinetic model for doxorubicin to explore its mechanisms of cytotoxicity and cardiotoxicity in human physiological contexts[J]. Pharm Res, 2018, 35(9): 174. |