[1] Schannwell CM, Schneppenheim M, Perings S, et al. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy[J]. Cardiology, 2002, 98 (1/2):33-39. [2] Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070. [3] Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival[J]. Antioxid Redox Signal, 2008, 10(8):1343-1374. [4] Kuwabara M, Asanuma T, Niwa K, et al. Regulation of cell survival and death signals induced by oxidative stress[J]. J Clin Biochem Nutr, 2008, 43(2):51-57. [5] Tristan C, Shahani N, Sedlak TW, et al. The diverse functions of GAPDH: views from different subcellular compartments[J]. Cell Signal, 2011, 23(2):317-323. [6] Sen N, Hara MR, Kornberg MD, et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis[J]. Nat Cell Biol, 2008, 10(7):866-873. [7] Hara MR, Snyder SH. Nitric oxide-GAPDH-Siah: a novel cell death cascade[J]. Cell Mol Neurobiol, 2006, 26(4/5/6):527-538. [8] Yego EC, Mohr S. Siah-1 protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells[J]. J Biol Chem, 2010, 285(5): 3181-3190. [9] Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy[J]. Diabetes, 2009, 58(1):227-234. [10] Li Y, Feng Q, Arnold M, et al. Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes[J]. Cardiovasc Res, 2009, 84(1):100-110. [11] Shen E, Li Y, Shan L, et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia[J]. Diabetes, 2009, 58(10):2386-2395. [12] Luan R, Liu S, Yin T, et al. High glucose sensitizes adult cardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation[J]. Cardiovasc Res, 2009, 83(2):294-302. [13] Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome c-mediated caspase-3 activation pathway[J]. Diabetes, 2002, 51(6):1938-1948. [14] Ho FM, Lin WW, Chen BC, et al. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/ eNOS pathway[J]. Cell Signal, 2006, 18(3):391-399. [15] Kim WH, Lee JW, Gao B, et al. Synergistic activation of JNK/SAPK induced by TNF- α and IFN-γ: apoptosis of pancreatic-cells via the p53 and ROS pathway[J]. Cell Signal, 2005, 17(12):1516-1532. [16] Zordoky BN, El-Kadi AO. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart [J]. J Pharmacol Toxicol Methods, 2007, 56(3):317-22. [17] Sirover M. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3- phosphate dehydrogenase[J]. BiochimBiophys Acta, 1999, 1432(2):159-184. [18] Mohr S, Hallak H, de Boitte A, et al. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase[J]. J Biol Chem, 1999, 274(14):9427-9430. [19] Hara MR, Thomas B, Cascio MB, et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade[J]. Proc Natl Acad Sci, 2006, 103(10):3887-3889. [20] Dobrin JS, Lebeche D. Diabetic cardiomyopathy: signaling defects and therapeutic approaches[J]. Expert Rev Cardiovasc Ther, 2010, 8(3):373-391. [21] Tarze A, Deniaud A, Le Bras M, et al. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization[J]. Oncogene, 2007, 26(18):2606-2620. |