[1] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030[J]. Diabetes Care, 2004, 27(10): 1047-1053. [2] Bailey CJ, Turner RC. Metformin[J]. N Engl J Med, 1996, 334(9): 574-579. [3] Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update[J]. Ann Intern Med, 2002, 137(1): 25-33. [4] Diamanti-Kandarakis E, Kouli C, Tsianateli T, et al. Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome[J]. Eur J Endocrinol, 138(3): 269-274. [5] Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus[J]. N Engl J Med, 1995, 333(9): 550-554. [6] Dominguez LJ, Davidoff AJ, Srinivas PR, et al. Effects of metformin on tyrosine kinase activity, glucose transport, and intracellular calcium in rat vascular smooth muscle[J]. Endocrinology, 1996, 137(1): 113-121. [7] Matthaei S, Hamann A, Klein HH, et al. Association of metformin's effect to increase insulin- stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes[J]. Diabetes, 1991, 40(7): 850-857. [8] Hundal HS, Ramlal T, Reyes R, et al. Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells[J]. Endocrinology, 1992, 131(3): 1165-1173. [9] Sambol NC, Chiang J. Pharmacokinetics and pharmacodynamics of metformin on healthy subjects with noninsulin-dependent diabetes mellitus[J]. J Clin Pharmacol, 1996, 36(11): 1012-1021. [10] Kimura N, Masuda S, Tanihara Y, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1[J]. Drug Metab Pharmacokinet, 2005, 20(5): 379-386. [11] Dresser MJ, Xiao G, Leabman MK, et al. Interactions of N-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2)[J]. Pharm Res, 2002, 19(8): 1244- 1247. [12] Cascorbi I. Pharmacogenetics of cytochrome P4502D6: genetic background and clinical implication [J]. Eur J Clin Invest, 2003, 33(12): 17-22. [13] Campbell IW. Management of type 2 diabetes mellitus with special reference to metformin therapy [J]. Diabetes Metab, 1991, 17(1/2): 191-196. [14] Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49)[J]. JAMA, 1999, 281(121): 2005-2012. [15] Ieiri I, Takane H, Hirota T, et al. Genetic polymorphisms of drug transporters: pharmacokinetic and pharmacodynamic consequences in pharmacotherapy[J]. Expert Opin Drug Metab Toxicol, 2006, 2(5): 651-674. [16] Sogame Y, Kitamura A, Yabuki M, et al. A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes[J]. Biopharm Drug Dispos, 2009, 30(8): 476-484. [17] Izzedine H, Launay-Vacher V, Deray G. Renal tubular transporters and antiviral drugs: an update[J]. AIDS, 2005, 19(5): 455-462. [18] Fukushima-Uesaka H, Maekawa K, Ozawa S, et al. Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2)[J]. Drug Metab Pharmaco- kinet, 2004, 19(3): 239-244. [19] Nies AT, Koepsell H, Winter S, et al. Expression of organic cation trans-porters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by geneticfactors and cholestasis in human liver[J]. Hepatology, 2009, 50(4): 1227-1240. [20] Koepsell H, Endou H. The SLC22 drug transporter family[J]. Eur J Physiol, 2004, 447(5): 666-676. [21] Shu Y, Leabman MK, Feng B, et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1[J]. Proc Natl Acad Sci USA, 2003, 100(10): 5902-5907. [22] Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics[J]. Clin Pharmacol Ther, 2007, 83(2): 273-280. [23] Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action[J]. J Clin Invest, 2007, 117(5): 1422-1431. [24] Sakata T, Anzai N, Shin HJ, et al. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions[J]. Biochem Biophys Res Commun, 2004, 313(3): 789-793. [25] Takane H, Shikata E, Otsubo K, et al. Polymorphism in human organic cation transporters and metformin action[J]. Pharmacogenomics, 2008, 9(4): 415-422. [26] Itoda M, Saito Y, Maekawa K, et al. Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1)[J]. Drug Metab Pharmacokine, 2004, 19(4): 308-312. [27] Chen Y, Li S, Brown C, et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin[J]. Pharmacogenet Genomics, 2009, 19(4): 497-504. [28] Zolk O, Solbach TF, Konig J, et al. Structural determinants of inhibitorinteraction with the human organic cation transporter OCT2 (SLC22A2)[J]. Naunyn Schmiedebergs Arch Pharmacol, 2009, 379(4): 337-348. [29] Leabman MK, Giacomini KM. Estimating the contribution of genes and environment to variation in renal drug clearance[J]. Pharmacogenetics, 2003, 13(9): 581-584. [30] Song I, Shin H, Shim E, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin[J]. Clin Pharmacol Ther, 2008, 84(5): 559-562. [31] Wang Z, Yin O, Chow M. OCT2 polymorphism in vivo renal functional consequence: studies with metformin and cimetidine[J]. Clin Pharmacol Ther, 2007, 18(7): 637-645. [32] Legro RS, Barnhart HX, Schlaff WD, et al. Ovulatory Response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene[J]. J Clin Endocrinol Metab Doi, 2008, 93(3): 792-800. [33] Ertunc D, Tok EC, Aktas A, et al. The importance of IRS-1 Gly972Arg polymorphism in evaluating the response to metformin treatment in polycystic ovary syndrome[J]. Hum Reprod, 2005, 20(5): 1207-1212. |