[1] Weir-mccall JR, Yeap PM, Papagiorcopulo C, et al. Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy[J]. J Am Coll Cardiol, 2016, 68(20):2157-2165. [2] Agmon Y, Connolly HM, Olson LJ, et al. Noncompaction of the ventricular myocardium [J]. J Am Soc Echocardiogr, 1999, 12(10):859-863. [3] Maron B J, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies:an american heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee;Quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention[J]. Circulation, 2006, 113(14):1807-1816. [4] Arbustini E, Favalli V, Narula N, et al. Left ventricular noncompaction:A distinct genetic cardiomyopathy[J]. Jacc CardioOncol, 2016, 68(9):949-966. [5] Ichida F. Left ventricular noncompaction - risk stratification and genetic consideration[J]. J Cardiol, 2020, 75(1):1-9. [6] Sasse-Klaassen S, Gerull B, Oechslin E, et al. Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients [J]. Am J Med Genet A, 2003, 119a(2):162-167. [7] Miszalski-Jamka K, Jefferies JL, Mazur W, et al. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction [J]. Circ Cardiovasc Genet, 2017, 10(4):e001763. [8] Long PA, Evans JM, Olson TM. Exome sequencing establishes diagnosis of Alström syndrome in an infant presenting with non-syndromic dilated cardiomyopathy [J]. Am J Med Genet A, 2015, 167a(4):886-890. [9] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology [J]. Genet Med, 2015, 17(5):405-424. [10] 丁润欣, 钟家蓉. 心肌致密化不全发病机制及相关发病基因的研究进展 [J]. 儿科药学杂志, 2017, 23(3):61-64. [11] Jenni R, Oechslin E, Schneider J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction:A step towards classification as a distinct cardiomyopathy [J]. Heart, 2001, 86(6):666-671. [12] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism [J]. Cell, 2006, 124(3):471-484. [13] Kim E, Goraksha-Hicks P, Li L, et al. Regulation of TORC1 by Rag GTPases in nutrient response [J]. Nat Cell Biol, 2008, 10(8):935-945. [14] Laplante M, Sabatini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(Pt 20):3589-3594. [15] Sancak Y, Peterson TR, Shaul Y D, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1 [J]. Science (NY), 2008, 320(5882):1496-1501. [16] Aljeaid D, Sanchez AI, Wakefield E, et al. Prevalence of pathogenic and likely pathogenic variants in the RASopathy genes in patients who have had panel testing for cardiomyopathy [J]. Am J Med Genet A, 2019, 179(4):608-614. [17] Marin TM, Keith K, Davies B, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation [J]. J Clin Invest 2011, 121(3):1026-1043. [18] Ramos FJ, Chen SC, Garelick MG, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival[J]. Sci Transl Med, 2012, 4(144):144ra03. [19] Yano T, Shimoshige S, Miki T, et al. Clinical impact of myocardial mTORC1 activation in nonischemic dilated cardiomyopathy [J]. J Mol Cell Cardiol, 2016, 91:6-9. [20] Long PA, Zimmermann MT, Kim M, et al. De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy [J]. Hum Genet, 2016, 135(8):909-917. |