[1] Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: It's not all in the gut[J]. Exp Biol Med Maywood NJ,2020,245(2):85-95. [2] Olm MR, Bhattacharya N, Crits-Christoph A, et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria[J]. Sci Adv,2019,5(12):eaax5727. [3] Arthur CM, Nalbant D, Feldman HA, et al. Anemia induces gut inflammation and injury in an animal model of preterm infants[J]. Transfusion (Paris), 2019,59(4):1233-1245. [4] Wang K, Tao G, Sylvester KG. Recent advances in prevention and therapies for clinical or experimental necrotizing enterocolitis[J]. Dig Dis Sci, 2019,64(11):3078-3085. [5] Mohankumar K, Namachivayam K, Song T, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions[J]. Nat Commun,2019,10(1):3494. [6] Bowker RM, Yan X, de Plaen IG. Intestinal microcirculation and necrotizing enterocolitis: The vascular endothelial growth factor system[J]. Semin Fetal Neonatal Med,2018,23(6):411-415. [7] Bowker RM, Yan X, Managlia E, et al. Dimethyloxalylglycine preserves the intestinal microvasculature and protects against intestinal injury in a neonatal mouse NEC model: role of VEGF signaling[J]. Pediatr Res,2018,83(2):545-553. [8] Sabnis A, Carrasco R, Liu SXL, et al. Intestinal vascular endothelial growth factor is decreased in necrotizing enterocolitis[J]. Neonatology, 2015,107(3):191-198. [9] Niño DF, Zhou Q, Yamaguchi Y, et al. Cognitive impairments induced by necrotizing enterocolitis can be prevented by inhibiting microglial activation in mouse brain[J]. Sci Transl Med,2018,10(471).doi:10.1126/scitranslmed.aan0237. [10] Robinson JR, Kennedy C, van Arendonk KJ, et al. Neurodevelopmental considerations in surgical necrotizing enterocolitis[J]. Semin Pediatr Surg, 2018,27(1):52-56. [11] Mihi B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science[J]. Clin Perinatol,2019,46(1):145-157. [12] Hackam DJ, Sodhi CP, Good M. New insights into necrotizing enterocolitis: from laboratory observation to personalized prevention and treatment[J]. J Pediatr Surg,2019,54(3):398-404. [13] Shin SH, Kim EK, Yoo H, et al. Surgical necrotizing enterocolitis versus spontaneous intestinal perforation in white matter injury on brain magnetic resonance imaging[J]. Neonatology,2016,110(2):148-154. [14] Cuna A, Sampath V. Genetic alterations in necrotizing enterocolitis[J]. Semin Perinatol,2017,41(1):61-69. [15] Cuna A, George L, Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: Current knowledge, challenges, and future directions[J]. Semin Fetal Neonatal Med,2018,23(6):387-393. [16] Hackam DJ, Sodhi CP. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis[J]. Cell Mol Gastroenterol Hepatol,2018,6(2):229-238. [17] Wu W, Wang Y, Zou J, et al. Bifidobacterium adolescentis protects against necrotizing enterocolitis and upregulates TOLLIP and SIGIRR in premature neonatal rats[J]. BMC Pediatr,2017,17(1):1. [18] Fawley J, Cuna A, Menden HL, et al. Single-immunoglobulin interleukin-1-related receptor regulates vulnerability to TLR4-mediated necrotizing enterocolitis in a mouse model[J]. Pediatr Res,2018,83(1-1):164-174. [19] Lavoie S, Conway KL, Lassen KG, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response[J]. eLife,2019,8:e39982 [20] Sylvester KG, Kastenberg ZJ, Moss RL, et al. Acylcarnitine profiles reflect metabolic vulnerability for necrotizing enterocolitis in newborns born premature [J]. J Pediatr,2017,181:80-85. [21] Sylvester KG, Ling XB, Liu GY, et al. A novel urine peptide biomarker-based algorithm for the prognosis of necrotizing enterocolitis in human infants[J]. Gut,2014,63(8):1284-1292. [22] Jiang P, Trimigno A, Stanstrup J, et al. Antibiotic treatment preventing necrotising enterocolitis alters urinary and plasma metabolomes in preterm pigs[J]. J Proteome Res,2017,16(10):3547-3557. [23] Call L, Stoll B, Oosterloo B, et al. Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC[J]. Microbiome,2018,6(1):111. [24] 王朕,仰曙芬. 肠道菌群对新生儿坏死性小肠结肠炎影响的研究进展[J]. 中国儿童保健杂志,2020,28(11):1231-1233. [25] Stewart CJ,Marrs EC,Nelson A,et al.Development of the preterm gut microbiome in twins at risk of necrotizing enterocolitis and sepsis[J].PLoS One,2013,8(8):e73465 . [26] Underwood MA. Arguments for routine administration of probiotics for NEC prevention[J]. Curr Opin Pediatr,2019,31(2):188-194. [27] Underwood MA, Arriola J, Gerber CW, et al. Bifidobacterium longum subsp. infantis in experimental necrotizing enterocolitis: alterations in inflammation, innate immune response, and the microbiota[J]. Pediatr Res,2014,76(4):326-333. [28] Caplan MS, Underwood MA, Modi N, et al. Necrotizing enterocolitis: Using regulatory science and drug development to improve outcomes[J]. J Pediatr, 2019,212:208-215. [29] Gephart SM, Gordon PV, Penn AH, et al. Changing the paradigm of defining, detecting, and diagnosing NEC: perspectives on Bell's stages and biomarkers for NEC[J]. Semin Pediatr Surg,2018,27(1):3-10. |