[1] Szejko N, Robinson S, Hartmann A, et al.European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0.Part I: assessment[J].Eur Child Adolesc Psychiatry, 2022, 31(31): 383-402. [2] Liu ZS, Cui YH, Sun D, et al.Current status, diagnosis, and treatment recommendation for tic disorders in China[J].Front Psychiatry, 2020, 11: 774. [3] American Psychiatric Association.Diagnostic and statistical manual of mental disorders, Fifth Edition[M].Washington DC: American Psychiatric Association, 2013. [4] 杨春松, 张伶俐, 俞丹, 等.中国抽动障碍患者基因组学研究现状的循证评价[J].中国儿童保健杂志, 2018, 26(1): 55-58. Yang CS, Zhang LL, Yu D, et al.Evidence based assessment of genomics in tic disorders in China[J].Chin J Child Health Care, 2018, 26(1): 55-58. [5] Liu J, Yang T, Huang Z, et al.Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)[J].Int J Mol Med, 2022, 50(1): 92. [6] Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, et al.Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond[J].Stat Med, 2008, 27(2): 157-172. [7] Rizzo R, Ragusa M, Barbagallo C, et al.Circulating miRNAs profiles in tourette syndrome: Molecular data and clinical implications[J].Mol Brain, 2015, 8: 44. [8] 吴嘉美, 刘梦瑶, 许何丽, 等.hsa-miR-429的靶基因预测及功能分析[J].解剖科学进展,2019, 25(3): 312-315. Wu JM, Liu MY, Xu HL, et al.Prediction of has-miR-429 target gene and bioinformatics analysis[J].Progress of Anatomical Sciences, 2019, 25(3): 312-315. [9] Kozomara A, Birgaoanu M, Griffiths-Jones S.miRBase: From microRNA sequences to function[J].Nucleic Acids Res, 2019, 47(D1): 155-162. [10] Stelzer G, Rosen N, Plaschkes I, et al.The genecards suite: From gene data mining to disease genome sequence analyses[J].Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. [11] Piñero J, Bravo À, Queralt-Rosinach N, et al.DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants[J].Nucleic Acids Res, 2017, 45(D1): 833-839. [12] Chen Y, Wang X.miRDB: An online database for prediction of functional microRNA targets[J].Nucleic Acids Res, 2020, 48(D1): 127-131. [13] Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al.DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows[J].Nucleic Acids Res, 2013, 41(Web Server issue): W169-W173. [14] Chen H, Boutros PC.VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R[J].BMC Bioinformatics, 2011, 12: 35. [15] Krüger J, Rehmsmeier M.RNAhybrid: MicroRNA target prediction easy, fast and flexible[J].Nucleic Acids Res, 2006, 34(Web Server issue): W451-W454. [16] Ito K, Murphy D.Application of ggplot2 to Pharmacometric Graphics[J].CPT Pharmacometrics Syst Pharmacol, 2013, 2(10): e79. [17] Huang DW, Sherman BT, Tan Q, et al.The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists[J].Genome Biol, 2007, 8(9): R183. [18] Lewis BP, Burge CB, Bartel DP.Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J].Cell, 2005, 120(1): 15-20. [19] Song M.miRNAs-dependent regulation of synapse formation and function[J].Genes Genomics, 2020, 42(8): 837-845. [20] Trümbach D, Prakash N.The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis[J].Cell and Tissue Res, 2015, 359(1): 161-177. [21] Chen W, Zhang B, Guo W, et al.miR-429 inhibits glioma invasion through BMK1 suppression[J].J Neurooncol, 2015, 125(1): 43-54. [22] Zhou X, Lu H, Li F, et al.MicroRNA-429 inhibits neuroblastoma cell proliferation, migration and invasion via the NF-κB pathway[J].Cell Mol Biol Lett, 2020, 25: 5. [23] Qi R, Wang X.Inhibition of miR-429 improves neurological recovery of traumatic brain injury mice and attenuates microglial neuroinflammation[J].Int Immunopharmacol, 2020, 79: 106091. [24] Fu S, Zhang J, Zhang S.Knockdown of miR-429 attenuates Aβ-Induced neuronal damage by targeting SOX2 and BCL2 in mouse cortical neurons[J].Neurochem Res, 2018, 43(12): 2240-2251. [25] Murphy SJ, Lusardi TA, Phillips JI, et al.Sex differences in microRNA expression during development in rat cortex[J].Neurochem Int, 2014, 77: 24-32. [26] Janik P, Kalbarczyk A, Gutowicz M, et al.The analysis of selected neurotransmitter concentrations in serum of patients with Tourette syndrome[J].Neurochem Int, 2010, 44(3): 251-259. [27] 于文静, 白雪, 张雯, 等.健脾止动汤对多发性抽动症患儿神经递质的影响[J].中华中医药杂志, 2015, 30(5): 1757-1761. Yu JW, Bai X, Zhang W, et al.Effects of Jianpi Zhidong Decoction on the neurotransmitters of Tourette syndrome chidren[J].China Journal of Traditional Chinese Medicine and Pharmacy, 2015, 30(5): 1757-1761. [28] Mahone EM, Puts NA, Edden RAE, et al.GABA and glutamate in children with Tourette syndrome: A 1H MR spectroscopy study at 7T[J].Psychiatry Res Neuroimaging, 2018, 273: 46-53. [29] Naaijen J, Forde NJ, Lythgoe DJ, et al.Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder[J].Neuroimage Clin, 2017, 13: 16-23. [30] Sun XR, Zhang X, Jiang KY, et al.Gastrodin attenuates tourette syndrome by regulating EAATs and NMDA receptors in the striatum of rats[J].Neuropsychiatr Dis Treat, 2021, 17: 2243-2255. [31] Smith ID, Todd MJ, Beninger RJ.Glutamate receptor agonist injections into the dorsal striatum cause contralateral turning in the rat: Involvement of kainate and AMPA receptors[J].Eur J Pharmacol, 1996, 301(1-3): 7-17. [32] Singh J, Raina A, Sangwan N, et al.Identification of homologous human miRNAs as antivirals towards COVID-19 genome[J].Adv Cell Gene Ther, 2021, 4(4): e114. [33] Deng H, Le WD, Xie WJ, et al.Examination of the SLITRK1 gene in Caucasian patients with Tourette syndrome[J].Acta Neurol Scand, 2006, 114(6): 400-402. [34] O'Roak BJ, Morgan TM, Fishman DO, et al.Additional support for the association of SLITRK1 var321 and Tourette syndrome[J].Mol Psychiatry, 2010, 15(5): 447-450. [35] Beaubien F, Raja R, Kennedy TE, et al.Slitrk1 is localized to excitatory synapses and promotes their development[J].Sci Rep, 2016, 6: 27343. [36] Stillman AA, Krsnik Z, Sun J, et al.Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome[J].J Comp Neurol, 2009, 513(1): 21-37. [37] Uhl GR, Martinez MJ.PTPRD: Neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes[J].Ann NY Acad Sci, 2019, 1451(1): 112-129. [38] Won SY, Lee P, Kim HM.Synaptic organizer: Slitrks and type IIa receptor protein tyrosine phosphatases[J].Curr Opion Struc Biol, 2019, 54: 95-103. [39] Ali MZ, Farid A, Ahmad S, et al.In silico analysis identified putative pathogenic missense nsSNPs in human SLITRK1 gene[J].Genes, 2022, 13: 672. [40] Schroeder A, Vanderlinden J, Vints K, et al.A modular organization of LRR protein-mediated synaptic adhesion defines synapse Identity[J].Neuron, 2018, 99(2): 329-344. [41] Huang AY, Yu D, Davis LK, et al.Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette syndrome[J].Neuron, 2017, 94(6): 1101-1111. [42] Etherton MR, Blaiss CA, Powell CM, et al.Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments[J].PNAS, 2009, 106(42): 17998-18003. [43] Pak C, Danko T, Zhang Y, et al.Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1[J].Cell Stem Cell, 2015, 17(3): 316-328. [44] Davatolhagh MF, Fuccillo MV.Neurexin1α differentially regulates synaptic efficacy within striatal circuits[J].Cell Rep, 2021, 34(8): 108773. [45] Gunther J, Tian YF, Stamova B, et al.Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome[J].Psychiat Res, 2012, 200(2-3): 593-601. [46] Huang Q, Lian C, Dong Y, et al.SNAP25 inhibits glioma progression by regulating synapse plasticity via GLS-mediated glutaminolysis[J].Front Oncol, 2021, 11: 698835. [47] Liu P, Song C, Wang C, et al.Spinal SNAP-25 regulates membrane trafficking of GluA1-containing AMPA receptors in spinal injury-induced neuropathic pain in rats[J].Neurosci Lett, 2020, 715: 134616. [48] Pozzi D, Corradini I, Matteoli M.The control of neuronal calcium homeostasis by SNAP-25 and its impact on neurotransmitter release[J].Neurosci, 2019, 420: 72-78. |