[1] Saha K,Sontheimer EJ, Brooks PJ,et al.The NIH Somatic Cell Genome Editing program[J].Nature, 2021, 592(7853): 195-204. [2] High KA,Roncarolo MG. Gene therapy[J].N Engl J Med, 2019, 381: 455-464. [3] Onodera M, Nelson DM, Sakiyama Y,et al. Gene therapy for severe combined immunodeficiency caused by adenosine deaminase deficiency: improved retroviral vectors for clinical trials[J]. Acta Haematol, 1999,101(2):89-96. [4] Batshaw ML, Robinson MB, Ye X, et al. Correction of ureagenesis after gene transfer in an animal model and after liver transplantation in humans with ornithine transcarbamylase deficiency[J]. Pediatr Res, 1999, 46(5):588-593. [5] 刘耀, 熊莹喆, 蔡镇泽, 等. 基因编辑技术的发展与挑战[J]. 生物工程学报, 2019, 35(8): 1401-1410. [6] Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering[J]. J Mol Biol, 2016, 428(5): 963-989. [7] Komor AC, Kim YB, Packer MS,et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533(7603):420-442. [8] Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature,2017, 551(7681):464-471. [9] Zhao D, Li J, Li S,et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol,2021, 39(1):35-40. [10] Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: Anupdate[J]. J Gene Med,2018, 20(5): e3015. [11] Young CS,Hicks MR,Ermolova NV et al. A single crispr-cas9 deletion strategy that targets the majority of dmd patients restores dystrophin function in hipsc-derived muscle cells[J].Cell Stem Cell, 2016, 18: 533-40. [12] Liu Y, Yang Y, Kang X,et al. One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection[J]. Mol Ther Nucleic Acids, 2017, 6: 57-67. [13] Khan A, Barber DL, Huang J, et al. Lentivirus-mediated gene therapy forFabry disease[J]. Nat Commun,2021, 12(1):1178. [14] Eichler F, Duncan C, Musolino PL,et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy[J]. N Engl J Med,2017, 377(17):1630-1638. [15] Smith BK, Collins SW, Conlon TJ, et al. Phase Ⅰ/Ⅱ trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety andventilatory outcomes[J]. Hum Gene Ther,2013, 24:630-640. [16] Corti M, Liberati C, Smith BK, et al. Safety ofintradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease[J]. Hum Gene Ther Clin Dev,2017, 28:208-218. [17] Tardieu M,Zérah M, Gougeon ML, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial[J]. Lancet Neurol,2017, 16(9):712-720. [18] Savita R, Liron W, Will L et al. AAV5-factor VIII gene transfer in severe hemophilia A[J]. N Engl J Med, 2017, 377: 2519-2530. [19] Chandler RJ, Venditti CP. Gene therapy for methylmalonic acidemia: Past, present, and future. hum gene ther. 2019, 30(10):1236-1244. [20] Long C, McAnally JR, Shelton JM, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing ofgermline DNA[J]. Science,2014, 345(6201):1184-1188. [21] Gammage PA, Viscomi C, Simard ML,et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo[J]. Nat Med,2018, 24(11):1691-1695. [22] Bacman SR, Kauppila JHK, Pereira CV, et al.MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation[J]. Nat Med,2018, 24(11):1696-1700. [23] Mok BY, de Moraes MH, Zeng J,et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J]. Nature,2020, 583(7817):631-637. [24] Liang PP, Xu YW, Zhang XY, et al. CRISPR/Cas9-mediated gene editing in humantripronuclear zygotes[J]. Prot Cell, 2015, 6(5): 363-372 [25] LaBarbera AR. Proceedings of the international summit on human gene dditing:A global discussion-Washington D.C., December 1-3, 2015[J]. J Assist Reprod Genet,2016, 33(9):1123-1127. [26] Hruscha A, Krawitz P, Rechenberg A, et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish[J]. Development,2013, 140(24):4982-4287. [27] Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat Med,2018, 24(7):927-930. |