[1]Wang SB, Pang XB, Gao M, et al. Pinocembrin protects rats against cerebral ischemic damage through soluble epoxide hydrolase and epoxyeicosatrienoic acids[J]. Chin J Nat Med, 2013, 11(3): 207-213.
[2]Liu R, Li JZ, Song JK, et al. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits[J]. Neurobiol Aging, 2014, 35(6): 1275-1285.
[3]Zhao G, Zhang W, Li L, et al. Pinocembrin protects the brain against ischemia-reperfusion injury and reverses the autophagy dysfunction in the penumbra area[J]. Molecules, 2014, 19(10): 15786-15798.
[4]武彩霞,杜冠华. 匹诺塞林对局灶性脑缺血再灌注损伤大鼠炎症反应的影响[J/OL]. 山东医学高等专科学校学报,2015,37(4):247-250.
[5]武彩霞, 杜冠华. 匹诺塞林对局灶性脑缺血再灌注大鼠脑组织急性损伤的神经保护作用[J]. 中国临床药理学与治疗学, 2015, 20(11): 1208-1211.
[6]Wu CX, Liu R, Gao M, et al. Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis[J]. Neurosci Lett, 2013, 546: 57-62.
[7]Burden S, Yarden Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis[J]. Neuron, 1997,18(6):847-855.
[8]Weinstein PR, Hong S, Sharp FR. Molecular identification of the ischemic penumbra[J]. Stroke, 2004 , 35(11 Suppl 1):2666-2670.
[9]Kim YK, Leem JG, Sim JY, et al. The effects of gabapentin pretreatment on brain injury induced by focal cerebral ischemia/reperfusion in the rat[J]. Korean J Anesthesiol,2010,58(2): 184-190.
[10]Cuevas P, Gutierrez DJA, Reimers D, et al. Aspects of interastrocytic gap junctions in blood-brain barrier in the experimental penumbra area, revealed by transmission electron microscopy and freeze-fracture[J]. Experientia, 1984, 40(5):471-473.
[11]Memezawa H, Minamisawa H, Smith ML, et al. Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat[J]. Exp Brain Res, 1992, 89(1):67-78.
[12]Memezawa H, Smith ML, Siesjo BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats[J]. Stroke, 1992, 23(4):552-559.
[13]刘春蕾, 何昆仑, 王莉莉. 基于内质网应激途径的细胞保护策略的研究进展[J]. 中国药理学通报, 2011,27(4):455-458.
[14]Sheng R, Liu XQ, Zhang LS, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012, 8(3):310-325.
[15]Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K, et al. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1alpha in ischemic kidney: the role of nitric oxide[J]. J Biomed Sci, 2012, 19:7.
[16]刘宝琴, 王华芹. 内质网应激与未折叠蛋白反应的研究进展[J]. 中华肿瘤防治杂志, 2010,(11):869-872.
[17]Paschen W. Shutdown of translation: lethal or protective? Unfolded protein response versus apoptosis[J]. J Cereb Blood Flow Metab, 2003,23(7):773-779.
[18]Yoshida H, Kondratenko N, Green S, et al. Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor[J]. Biochem J, 1998,334 ( Pt 1):9-13.
[19]Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways[J]. Nat Cell Biol, 2001,3(11):E255-263.
[20]Yu Z, Luo H, Fu W, et al. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis[J]. Exp Neurol, 1999,155(2):302-314.
[21]宋小燕, 赵永波, 周晓琳, 等. 大鼠脑缺血再灌注后内质网应激相关因子表达的改变[J]. 中国神经精神疾病杂志, 2007,33(10):624-626.
[22]宋小燕, 赵永波, 周晓琳, 等. 大鼠脑缺血再灌注后GRP78和GADD153的表达变化研究[J]. 中风与神经疾病杂志, 2008,25(2):139-141.
[23]Aoki M, Tamatani M, Taniguchi M, et al. Hypothermic treatment restores glucose regulated protein 78 (GRP78) expression in ischemic brain[J]. Brain Res Mol Brain Res, 2001, 95(1-2):117-128.
[24]Vilatoba M, Eckstein C, Bilbao G, et al. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis[J]. Surgery, 2005,138(2):342-351.
[25]Wu XD, Zhang ZY, Sun S, et al. Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress[J]. Apoptosis, 2013,18(1):85-98.
[26]Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress[J]. Nat Cell Biol, 2011,13(3):184-190.
[27]Puthalakath H, O'Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3-only protein Bim[J]. Cell, 2007,129(7):1337-1349.
[28]Oyadomari S, Mori M. Roles of CHOP in endoplasmic reticulum stress[J]. Cell Death Differ, 2004,11(4):381-389.
[29]Marciniak SJ, Garcia-Bonilla L, Hu J, et al. Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK[J]. J Cell Biol, 2006,172(2):201-209.
[30]Baranova O, Miranda LF, Pichiule P, et al. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia[J]. J Neurosci, 2007, 27(23):6320-6332.
[31]Haze K, Okada T, Yoshida H, et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response[J]. Biochem J, 2001,355(Pt 1):19-28.
[32]Yoshida H. Unconventional splicing of XBP-1 mRNA in the unfolded protein response[J]. Antioxid Redox Signal, 2007,9(12):2323-2333.
[33]Liu Y, Adachi M, Zhao S, et al. Preventing oxidative stress: a new role for XBP1[J]. Cell Death Differ, 2009,16(6):847-857.
[34]刘耀华, 杨光, 张旭, 等. X盒结合蛋白1调控胶质瘤细胞氧化应激的研究[J]. 中国神经肿瘤杂志, 2010,(01):1-8.
[35]Yoshida H, Oku M, Suzuki M, et al. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response[J]. J Cell Biol, 2006,172(4):565-575. |