[1]Craciun S, Marks JA, Balskus EP. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes[J]. Acs Chemical Biology, 2014, 9: 1408-1413.
[2]Zhu Y, Jameson E, Crosatti M, et al. Carnitine metabolism to trimethylamine by an unusual rieske-type oxygenase from human microbiota[J]. Proc Natl Acad Sci U S A, 2014, 111: 4268-4273.
[3]Schugar RC, Willard B, Wang Z, et al. Postprandial gut microbiota-driven choline metabolism links dietary cues to adipose tissuedysfunction[J]. Adipocyte, 2018, 7(1): 49-56.
[4]Tomlinson JAP, Wheeler DC.The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronickidney disease[J]. Kidney Int, 2017, 92(4): 809-815.
[5]李树彬, Adh Ikaricm, 高修仁. 炎症、炎症介质和代谢综合征[J]. 新医学, 2006,37(2): 131-134.
[6]Shan Z, Sun T, Huang H, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2diabetes[J]. Am J Clin Nutr, 2017, 106(3): 888-894.
[7]Tang WH, Wang Z, Li XS, et al. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus[J]. Clin Chem, 2017, 63(1): 297-306.
[8]Schugar RC, Shih DM, Warrier M, et al. The tmao-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue[J]. Cell Rep, 2017, 19(12): 2451-2461.
[9]Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation[J]. Curr Diab Rep, 2013, 13(3): 435-444.
[10]Al-Obaide MAI, Singh R, Datta P, et al. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced ckd[J]. J Clin Med, 2017, 6(9).
[11]Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63.
[12]Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5): 576-585.
[13]Geng J, Yang C, Wang B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway[J]. Biomed Pharmacother, 2018, 97: 941-947.
[14]Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017, 37(2):BSR20160244.
[15]Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappab[J]. J Am Heart Assoc,2016,5(2):pii:e002767.
[16]Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure[J]. Circ Heart Fail, 2016, 9: e002314.
[17]Troseid M, Ueland T, Hov JR, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure[J]. J Intern Med, 2015, 277(6): 717-726.
[18]Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis[J]. J Am Coll Cardiol, 2014, 64(18): 1908-1914.
[19]周素平, 杨成明. 炎症和心力衰竭[J]. 心血管病学进展, 2007,28(3): 493-496.
[20]罗健, 张源明. 高血压: 一种慢性低级别炎症性疾病[J]. 心血管病学进展, 2010, 31(4): 567-569.
[21]Ufnal M, Jazwiec R, Dadlez M, et al. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats[J]. Can J Cardiol, 2014, 30(12): 1700-1705.
[22]Ke Y, Li D, Zhao M, et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescenceand vascular aging through oxidative stress[J]. Free Radic Biol Med, 2018, 116: 88-100.
[23]Li D, Ke Y, Zhan R, et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice[J]. Aging Cell, 2018: e12768.
[24]Li T, Chen Y, Gua C, et al. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress[J]. Front Physiol, 2017, 8: 350.
[25]Xu R, Wang Q. Towards Understanding brain-gut-microbiome connections in alzheimer's disease[J]. Bmc Systems Biology, 2016, 10 Suppl 3: 63.
[26]张紫萱, 田绍文, 游咏. 神经炎症在神经退行性疾病和精神疾病中的病理生理作用[J]. 中南医学科学杂志, 2017, 45(3): 312-314.
[27]Del Rio D, Zimetti F, Caffarra P, et al. The gut microbial metabolite trimethylamine-N-oxide is present in human cerebrospinal fluid[J]. Nutrients, 2017, 9(10): 1053.
[28]康安, 郑啸, 文红梅, 等. 炎症信号在脑-肠轴中的传递及药物干预机制研究进展[J]. 中国临床药理学与治疗学, 2012, 17(12): 1407-1412.
[29]蒋建烨, 田湉, 张艳. Nlrp3炎症体与炎症性疾病[J]. 微生物学免疫学进展, 2012, 40(1): 79-82.
[30]Sun X, Jiao X, Ma Y, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ros-txnip-nlrp3 inflammasome[J]. Biochem Biophys Res Commun, 2016, 481: 63-70.
[31]Chen ML, Zhu XH, Ran L, et al. Trimethylamine-N-oxide induces vascular inflammation by activating the Nlrp3 inflammasome through the Sirt3-Sod2-mtros signaling pathway[J]. J Am Heart Assoc, 2017, 6(9). pii: e006347.
[32]Boini KM, Hussain T, Li PL, et al. Trimethylamine-N-oxide instigates Nlrp3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem, 2017, 44(1): 152-162.
[33]Yue C, Yang X, Li J, et al. Trimethylamine N-oxide prime NLRP3 inflammasome via inhibiting ATG16L1-induced autophagyin colonic epithelial cells[J]. Biochem Biophys Res Commun, 2017, 490(2): 541-551.
[34]Hayden MS, Ghosh S. Nf-Kappab In Immunobiology[J]. Cell Res, 2011, 21(2): 223-244.
[35]Yu L, Meng G, Huang B, et al. A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation[J]. Int J Cardiol, 2018, 255: 92-98.
[36]Sarao LK, Arora M. Probiotics, prebiotics, and microencapsulation: A review[J]. Crit Rev Food Sci Nutr, 2017, 57(2): 344-371.
[37]Zmora N, Zilberman-Schapira G, Suez J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features[J]. Cell, 2018, 174(6): 1388-1405.
[38]Qiu L, Yang D, Tao X, et al. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice[J]. J Microbiol Biotechnol, 2017, 27(8): 1491-1499.
[39]Qiu L, Tao X, Xiong H, et al. Lactobacillus plantarum Zdy04 exhibits a strain-specific property of lowering tmao via the modulation of gut microbiota in mice[J]. Food Funct, 2018, 9: 4299-4309.
[40]Ramezani A, Nolin TD, Barrows IR, et al. Gut colonization with methanogenic archaea lowers plasma trimethylamine N-oxide concentrations in apolipoprotein e-/- mice[J]. Sci Rep, 2018, 8: 14752.
[41]Malik M, Suboc T M, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9): 1091-1102.
[42]Tripolt NJ, Leber B, Triebl A, et al. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study[J]. Atherosclerosis, 2015, 242(1): 141-144.
[43]Boutagy NE, Neilson AP, Osterberg KL, et al. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet[J]. Obesity (Silver Spring), 2015, 23(12): 2357-2363.
[44]Borges NA, Stenvinkel P, Bergman P, et al. Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study[J]. Probiotics Antimicrob Proteins, 2018.
[45]Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme[J]. Proc Natl Acad Sci U S A, 2012, 109(52): 21307-21312.
[46]Martinez-Del Campo A, Bodea S, Hamer HA, et al. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria[J]. Mbio, 2015, 6.
[47]Romano KA, Martinez-Del Campo A, Kasahara K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290 e277.
[48]Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7): 1585-1595.
[49]Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential[J]. Nat Med, 2018, 24(9): 1407-1417.
[50]Skye SM, Zhu W, Romano KA, et al. Microbial transplantation with human gut commensals containing cutc is sufficient to transmit enhanced platelet reactivity and thrombosis potential[J]. Circ Res, 2018, 123(10): 1164-1176. |