[1]Nelson DR. Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution[J]. Arch Biochem Biophys, 2003,409(1):18-24.
[2]Cheng JB, Motola DL, Mangelsdorf DJ, et al. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase[J]. J Biol Chem, 2003, 278(39):38084-38093.
[3]Rochel N,Molnár F.Structural aspects of vitamin D endocrinology[J].Mol Cell Endocrinol,2017,453:22-35.
[4]Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study[J]. Lancet, 2010, 376(9736):180-188.
[5]Zhu JG, Ochalek JT, Kaufmann M, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo[J]. Proc Natl Acad Sci U S A, 2013, 110(39):15650-15655.
[6]Al Mutair AN,Nasrat GH,Russell DW.Mutation of the CYP2R1 vitamin D 25hydroxylase in a Saudi Arabian family with severe vitamin D deficiency[J].J Clin Endocrinol Metab,2012,97(10):E2022- E2025.
[7]Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D[J]. J Lipid Res, 2014, 55(1):13-31.
[8]Wjst M, Altmüller J, Faus-Kessler T, et al. Asthma families show transmission disequilibrium of gene variants in the vitamin D metabolism and signalling pathway[J]. Respir Res,2006, 7:60.
[9]Wang Y, Yu F, Yu S, et al. Triangular relationship between CYP2R1 gene polymorphism, serum 25(OH)D3 levels and T2DM in a Chinese rural population[J]. Gene, 2018 , 3(18):30863-30871.
[10]Duan L,Xue Z,Ji H,et al.Effects of CYP2R1 gene variants on vitamin D levels and status: A systematic review and meta-analysis[J].Gene,2018,678:361-369.
[11]Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets[J]. J Clin Endocrinol Metab,2016,101(2):394-415.
[12]Spiro A, Buttriss JL. Vitamin D: An overview of vitamin D status and intake in Europe[J]. Nutr Bull, 2014,39(4):322-350.
[13]Casella SJ, Reiner BJ, Chen TC, et al. A possible genetic defectin 25-hydroxylation as a cause of rickets[J]. J Pediatr, 1994, 124(6):929-932.
[14]Thacher TD, Fischer PR, Singh RJ, et al. CYP2R1 mutations impair generation of 25-hydroxyvitamin D and cause an atypical form of vitamin D deficiency[J]. J Clin Endocrinol Metab, 2015,100(7): E1005- E1013.
[15]Thacher TD, Levine MA. CYP2R1 mutations causing vitamin D-deficiency rickets[J]. J Steroid Biochem Mol Biol, 2017,173: 333-336.
[16]Xu X, Mao J, Zhang M, et al. Vitamin D deficiency in Uygurs and Kazaks is associated with polymorphisms in CYP2R1 and DHCR7/NADSYN1 genes[J]. Med Sci Monit, 2015,21: 1960-1968.
[17]Robert S, Korf H, Gysemans C, et al. Antigen-based vs. systemic immunomodulation in type 1 diabetes: the pros and cons[J]. Islets, 2013,5(2):53-66.
[18]Cantorna MT, Snyder L, Lin YD, et al. Vitamin D and 1,25(OH)2D regulation of T cells[J]. Nutrients, 2015, 7(4):3011-3021.
[19]Mazanova A, Shymanskyi I, Lisakovska O, et al. Effects of cholecalciferol on key components of vitamin D-endo/para/autocrine system in experimental type 1 diabetes[J]. Int J Endocrinol, 2018: 2494016.
[20]Morán-Auth Y,Penna-Martinez M,Shoghi F,et al.Vitamin D status and gene transcription in immune cells[J].J Steroid Biochem Mol Biol,2013,136:83-85.
[21]Hussein AG, Mohamed RH, Alghobashy AA. Synergism of CYP2R1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in Egyptian children[J]. Cell Immunol,2012,279(1):42-45.
[22]Peng X, Shang G, Wang W, et al. Fatty acid oxidation in zebrafish adipose tissue is promoted by 1a,25(OH)2D3[J]. Cell Rep, 2017,19(7):1444-1455.
[23]Borges CC, Salles AF, Bringhenti I, et al. Vitamin D deficiency increases lipogenesis and reduces beta-oxidation in the liver of diet-induced obese mice[J]. J Nutr Sci Vitaminol (Tokyo), 2018,64(2):106-115.
[24]Soininen S, Eloranta AM, Viitasalo A, et al. Serum 25-Hydroxyvitamin D, plasma Lipids, and associated gene variants in prepubertal children[J]. J Clin Endocrinol Metab,2018, 103(7):2670-2679.
[25]Karonova T, Belyaeva O, Jude EB, et al. Serum 25(OH)D and adipokines levels in people with abdominal obesity[J]. J Steroid Biochem Mol Biol, 2018,75: 170-176.
[26]Tosunbayraktar G, Bas M, Kut A, et al. Low serum 25(OH)D levels are assocrated to higher BMI and metabolic syndrome parameters in adult subjects in Turkey[J]. Afr Health Sci,2015,15(4):1161-1169.
[27]Qi Q, Zheng Y, Huang T, et al. Vitamin D metabolism-related genetic variants, dietary protein intake and improvement of insulin resistance in a 2 years weight-loss trial: POUNDS lost [J]. Diabetologia, 2015, 58(12):2791-2799.
[28]Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects[J]. Physiol Rev, 2016, 96(1):365-408.
[29]Grant WB. A review of the evidence supporting the vitamin D-cancer prevention hypothesis in 2017[J]. Anticancer Res, 2018, 38(2):1121-1136.
[30]Moukayed M, Grant WB. The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: A review of the epidemiology, clinical trials, and mechanisms[J]. Rev Endocr Metab Disord, 2017, 18(2):167-182.
[31]Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer[J]. Exp Mol Med, 2018 , 50(4):20.
[32]Urbschat A, Paulus P, von Quernheim QF, et al. Vitamin D hydroxylases CYP2R1, CYP27B1 and CYP24A1 in renal cell carcinoma[J]. Eur J Clin Invest, 2013,43(12):1282-1290.
[33]Estébanez N, Gómez-Acebo I, Palazuelos C, et al. Vitamin D exposure and Risk of Breast Cancer: a meta-analysis[J]. Sci Rep, 2018, 8(1):9039.
[34]Yao S, Kwan ML, Ergas IJ, et al. Association of serum level of vitamin D at diagnosis with breast cancer survival: a case-cohort analysis in the pathways Study[J]. JAMA Oncol, 2017, 3(3):351-357.
[35]Ratnadiwakara M, Williams RB, Blackburn AC. Abstract A117: Vitamin D, parathyroid hormone, Cyp2R1, and breast cancer susceptibility in mice[J]. Mol Cancer Res, 2013, 11(10): A117.
[36]Sheng L, Callen DF, Turner AG. Vitamin D3 signaling and breast cancer: Insights from transgenic mouse models[J]. J Steroid Biochem Mol Biol,2018,178: 348-353.
[37]O'Brien KM, Sandler DP, Kinyamu HK, et al. Single nucleotide polymorphisms in vitamin D-related genes may modify vitamin D-breast cancer associations[J]. Cancer Epidemiol Biomarkers Prev, 2017 , 26(12):1761-1771.
[38]Pibiri F, Kittles RA, Sandler RS, et al. Genetic variation in vitamin D-related genes and risk of colorectal cancer in African Americans[J]. Cancer Causes Control, 2014,25(5):561-570.
[39]Szkandera J, Absenger G, Pichler M, et al. Association of common gene variants in vitamin D modulating genes and colon cancer recurrence[J]. J Cancer Res Clin Oncol, 2013,139(9):1457-1464.
[40]Ekmekcioglu C, Haluza D, Kundi M. 25-Hydroxyvitamin D status and risk for colorectal cancer and type 2 diabetes mellitus: A systematic review and meta-analysis of epidemiological studies[J]. Int J Environ Res Public Health, 2017,14(2) :pii: E127.
[41]Maalmi H, Walter V, Jansen L, et al. Relationship of very low serum 25-hydroxyvitamin D3 levels with long-term survival in a large cohort of colorectal cancer patients from Germany[J]. Eur J Epidemiol, 2017, 32(11):961-971.
[42]Dou R, Ng K, Giovannucci EL, et al. Giovannucci vitamin D and colorectal cancer: Molecular, epidemiological, and clinical evidence[J]. Br J Nutr, 2016 ,115(9):1643-1660.
[43]Morales-Oyarvide V, Meyerhardt JA, Ng K. Vitamin D and physical activity in patients with colorectal cancer: Epidemiological evidence and therapeutic implications[J]. Cancer J, 2016, 22(3):223-231.
[44]Anderson LN, Cotterchio M, Knight JA, et a. Genetic variants in vitamin d pathway genes and risk of pancreas cancer; results from a population-based case-control study in ontario, Canada[J]. PLoS One, 2013, 8(6): e66768.
[45]Meyer HE, Stoer NC, Samuelsen SO, et al. Long term association between serum 25-hydroxyvitamin D and mortality in a cohort of 4379 men[J]. PLoS One, 2016, 11(3): e0151441.
[46]Gao J, Wei W, Wang G, et al. Circulating vitamin D concentration and risk of prostate cancer: a dose-response meta-analysis of prospective studies[J]. Ther Clin Risk Manag, 2018 , 14: 95-104.
[47]Tak YJ, Lee JG, Kim YJ, et al. Serum 25-hydroxyvitamin D levels and testosterone deficiency in middle-aged Korean men: a cross-sectional study[J]. Asian J Androl, 2015, 17(2):324-328. |