[1]Olbryt M. Molecular background of skin melanoma development and progression: therapeutic implications [J]. Postepy Dermatol Alergol, 2019, 36(2): 129-138. [2]Croce L, Coperchini F, Magri F, et al. The multifaceted anti-cancer effects of BRAF-inhibitors [J]. Oncotarget, 2019, 10(61): 6623-6640. [3]Romano E, Pradervand S, Paillusson A, et al. Identification of multiple mechanisms of resistance to vemurafenib in a patient with BRAFV600E-mutated cutaneous melanoma successfully rechallenged after progression [J]. Clin Cancer Res, 2013, 19(20): 5749-5757. [4]Ahn JH, Hwang SH, Cho HS, et al. Differential gene expression common to acquired and intrinsic resistance to BRAF inhibitor revealed by RNA-Seq analysis [J]. Biomol Ther (Seoul), 2019, 27(3): 302-310. [5]Kakadia S, Yarlagadda N, Awad R, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma [J]. Onco Targets Ther, 2018, 11: 7095-7107. [6]Johnson DB, Childress MA, Chalmers ZR, et al. BRAF internal deletions and resistance to BRAF/MEK inhibitor therapy [J]. Pigment Cell Melanoma Res, 2018, 31(3): 432-436. [7]Luebker SA, Koepsell SA. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies [J]. Front Oncol, 2019, 9: 268. [8]Duggan MC, Stiff AR, Bainazar M, et al. Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma [J]. Proc Natl Acad Sci U S A, 2017, 114(36): 9629-9634. [9]Irvine M, Stewart A, Pedersen B, et al. Oncogenic PI3K/AKT promotes the step-wise evolution of combination BRAF/MEK inhibitor resistance in melanoma [J]. Oncogenesis, 2018, 7(9): 72. [10]Misek SA, Appleton KM, Dexheimer TS, et al. Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells [J]. Oncogene, 2020, 39(7): 1466-1483. [11]Fisher ML, Grun D, Adhikary G, et al. Inhibition of YAP function overcomes BRAF inhibitor resistance in melanoma cancer stem cells [J]. Oncotarget, 2017, 8(66): 110257-110272. [12]Feddersen CR, Schillo JL, Varzavand A, et al. Src-dependent DBL family members drive resistance to vemurafenib in human melanoma [J]. Cancer Res, 2019, 79(19): 5074-5087. [13]Webster MR, Fane ME, Alicea GM, et al. Paradoxical role for wild-type p53 in driving therapy resistance in melanoma [J]. Mol Cell, 2019. [14]Caporali S, Alvino E, Lacal PM, et al. Targeting the PTTG1 oncogene impairs proliferation and invasiveness of melanoma cells sensitive or with acquired resistance to the BRAF inhibitor dabrafenib [J]. Oncotarget, 2017, 8(69): 113472-113493. [15]Shen S, Faouzi S, Bastide A, et al. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells [J]. Nat Commun, 2019, 10(1): 5713. [16]Gupta R, Bugide S, Wang B, et al. Loss of BOP1 confers resistance to BRAF kinase inhibitors in melanoma by activating MAP kinase pathway [J]. Proc Natl Acad Sci U S A, 2019, 116(10): 4583-4591. [17]Liu X, Zhang SM, McGeary MK, et al. KDM5B promotes drug resistance by regulating melanoma-propagating cell subpopulations [J]. Mol Cancer Ther, 2019, 18(3): 706-717. [18]Saei A, Eichhorn PJA. Ubiquitination and adaptive responses to BRAF inhibitors in Melanoma [J]. Mol Cell Oncol, 2018, 5(5): e1497862. [19]Diaz-Martinez M, Benito-Jardon L, Alonso L, et al. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma [J]. Cancer Res, 2018, 78(4): 1017-1030. [20]Koetz-Ploch L, Hanniford D, Dolgalev I, et al. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway [J]. Pigment Cell Melanoma Res, 2017, 30(3): 328-338. [21]Kim JH, Ahn JH, Lee M. Upregulation of microRNA-1246 is associated with BRAF inhibitor resistance in melanoma cells with mutant BRAF [J]. Cancer Res Treat, 2017, 49(4): 947-959. [22]Pieper N, Zaremba A, Leonardelli S, et al. Evolution of melanoma cross-resistance to CD8(+) T cells and MAPK inhibition in the course of BRAFi treatment [J]. Oncoimmunology, 2018, 7(8): e1450127. [23]Jiang X, Zhou J, Giobbie-Hurder A, et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition [J]. Clin Cancer Res, 2013, 19(3): 598-609. [24]Kim MH, Kim CG, Kim SK, et al. YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma [J]. Cancer Immunol Res, 2018, 6(3): 255-266. [25]Hirata E, Girotti MR, Viros A, et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling [J]. Cancer Cell, 2015, 27(4): 574-588. [26]Ruzzolini J, Peppicelli S, Andreucci E, et al. Everolimus selectively targets vemurafenib resistant BRAF(V600E) melanoma cells adapted to low pH [J]. Cancer Lett, 2017, 408: 43-54. [27]Basu R, Kulkarni P, Qian Y, et al. Growth hormone upregulates melanocyte-inducing transcription factor expression and activity via JAK2-STAT5 and SRC signaling in GH receptor-positive human melanoma [J]. Cancers (Basel), 2019, 11(9): 1352. [28]Xiao J, Egger ME, McMasters KM, et al. Differential expression of ABCB5 in BRAF inhibitor-resistant melanoma cell lines [J]. BMC Cancer, 2018, 18(1): 675. [29]Cesi G, Philippidou D, Kozar I, et al. A new ALK isoform transported by extracellular vesicles confers drug resistance to melanoma cells [J]. Mol Cancer, 2018, 17(1): 145. [30]Martin S, Dudek-Peric AM, Garg AD, et al. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF(V600E) inhibitor-resistant metastatic melanoma cells [J]. Autophagy, 2017, 13(9): 1512-1527. [31]Consoli F, Bersanelli M, Perego G, et al. Network indirect comparison of 3 BRAF + MEK inhibitors for the treatment of advanced BRAF mutated melanoma [J]. Clin Transl Oncol, 2020, 22(6): 900-907. [32]Sun J, Carr MJ, Khushalani NI. Principles of targeted therapy for melanoma [J]. Surg Clin North Am, 2020, 100(1): 175-188. [33]Garzon-Orjuela N, Prieto-Pinto L, Lasalvia P, et al. Efficacy and safety of dabrafenib-trametinib in the treatment of unresectable advanced/metastatic melanoma with BRAF-V600 mutation: A systematic review and network meta-analysis [J]. Dermatol Ther, 2019: e13145. [34]Trojaniello C, Festino L, Vanella V, et al. Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations [J]. Expert Rev Clin Pharmacol, 2019, 12(3): 259-266. [35]Kattan J, Kattan C, Farhat F, et al. Overcoming the resistance to BRAF inhibitor by the double BRAF and MEK inhibitions in advanced melanoma: a case report [J]. Anticancer Drugs, 2019, 30(10): 1052-1054. [36]Valpione S, Carlino MS, Mangana J, et al. Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study [J]. Eur J Cancer, 2018, 91: 116-124. [37]Tietze JK, Forschner A, Loquai C, et al. The efficacy of re-challenge with BRAF inhibitors after previous progression to BRAF inhibitors in melanoma: A retrospective multicenter study [J]. Oncotarget, 2018, 9(76): 34336-34346. [38]Pelster MS, Amaria RN. Combined targeted therapy and immunotherapy in melanoma: a review of the impact on the tumor microenvironment and outcomes of early clinical trials [J]. Ther Adv Med Oncol, 2019, 11: 1758835919830826. [39]Brummer C, Faerber S, Bruss C, et al. Metabolic targeting synergizes with MAPK inhibition and delays drug resistance in melanoma [J]. Cancer Lett, 2019, 442: 453-463. [40]Vashisht Gopal YN, Gammon S, Prasad R, et al. A novel mitochondrial inhibitor blocks MAPK pathway and overcomes MAPK inhibitor resistance in melanoma [J]. Clin Cancer Res, 2019, 25(21): 6429-6442. [41]Hall A, Maynard S, Wu LP, et al. Perturbation of mitochondrial bioenergetics by polycations counteracts resistance to BRAF(E600) inhibition in melanoma cells [J]. J Control Release, 2019, 309: 158-172. [42]Carpenter EL, Chagani S, Nelson D, et al. Mitochondrial complex I inhibitor deguelin induces metabolic reprogramming and sensitizes vemurafenib-resistant BRAF(V600E) mutation bearing metastatic melanoma cells [J]. Mol Carcinog, 2019, 58(9): 1680-1690. |