欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是 分享到:

中国临床药理学与治疗学 ›› 2021, Vol. 26 ›› Issue (6): 609-615.doi: 10.12092/j.issn.1009-2501.2021.06.002

• 基础研究 • 上一篇    下一篇

抗FGF-2纳米抗体抑制碱烧伤诱导大鼠角膜血管新生

卢锐斌1,赵辉1,谢秋玲1,胡露2,郭朝万2,裴运林2,熊盛1,2   

  1. 1暨南大学生命科学技术学院,基因工程药物国家工程研究中心,广州 510632,广东;2广东丸美生物技术股份有限公司,广州 510530,广东
  • 收稿日期:2021-02-07 修回日期:2021-03-10 出版日期:2021-06-26 发布日期:2021-07-06
  • 通讯作者: 熊盛,男,博士,博导,主要从事生物技术药物的研究开发。 Tel: 13316076715 E-mail: Xsh_jnu@hotmail.com
  • 作者简介:卢锐斌,男,硕士研究生,研究方向:生物医药。 Tel: 15627863487 E-mail: 654111246@qq.com
  • 基金资助:
    广东省省级科技计划资助项目(2015A020211016)

Anti-FGF-2 nanobody inhibits rat corneal angiogenesis induced by alkali burn 

LU Ruibin 1, ZHAO Hui 1, XIE Qiuling 1, HU Lu 2, GUO Chaowan 2, PEI Yunlin 2, XIONG Sheng 1,2   

  1. 1 Jinan University, College of Life Science and Technology, Guangzhou 510632, Guangdong, China; 2 Guangdong Marumi Biotechnology Co., Ltd., Guangzhou 510530, Guangdong, China
  • Received:2021-02-07 Revised:2021-03-10 Online:2021-06-26 Published:2021-07-06
  • Supported by:
    Guangdong Provincial Science and Technology Plan Funded Project

摘要: 目的:研究抗成纤维细胞生长因子(FGF-2)纳米抗体对碱烧伤诱导的大鼠角膜血管生成的治疗作用。方法:将SD大鼠分为:假手术组(Sham),模型组(Model,直径为3 mm的浸有1 mol/L NaOH溶液圆形滤纸贴于大鼠眼角膜中央处30 s,制备大鼠碱烧伤血管生成模型)和治疗组(Treatment,术后7天至21天用3 mg/mL的抗FGF-2纳米抗体溶液滴眼,每日3次,每次10 μL,共14天)。通过体视显微镜和CD31免疫组织化学染色计算大鼠角膜血管生成情况。实时荧光定量PCR、酶联免疫吸附测定和免疫组织化学染色3种方法检测抗血管内皮生长因子(VEGF)和FGF-2的mRNA和蛋白表达水平。结果:(1)血管:治疗组较模型组的面积显著减少,血管管腔较窄(P<0.05),在药物干预14天后,差异最为显著;(2)FGF-2的mRNA和蛋白表达水平:模型组与治疗组的结果相近(P>0.05);(3)VEGF的mRNA和蛋白表达水平:治疗组显著高于模型组(P<0.05)。此外,假手术组的持续给药也使得VEGF表达显著增加(P<0.05)。 结论:抗FGF-2纳米抗体可抑制由碱烧伤诱导的角膜血管新生,但也使得正常大鼠角膜或病理大鼠角膜的VEGF表达水平代偿性升高。

关键词: 角膜新生血管, 成纤维细胞生长因子-2, 血管内皮生长因子, 纳米抗体

Abstract: AIM: To investigate the possible use of anti-FGF-2 nanobody for the treatment of pathological neovascularization.  METHODS: SD rats were divided into a sham operation group, a control group (3 mm diameter circular filter paper soaked with 1 mol/L NaOH solution was applied to the central part of the cornea of rats for 30 s to prepare the rat model of alkali-burn angiogenesis) and a treatment group (treated with a drop of 3 mg/mL anti-FGF-2 nanobody 7 days after the operation. Repeat application 3x/day for 14 days). Corneal angiogenesis was measured by stereoscopic microscopy and CD31 immunohistochemical staining. The mRNA and protein expression levels of VEGF and FGF-2 were detected by quantitative fluorescence PCR (qPCR), enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry.RESULTS: (1) Blood vessel: The area of the treatment group was significantly reduced compared with the model group, and the vascular lumen was narrower (P<0.05). The difference was the most significant after 14 days of drug intervention; (2) Expression level of FGF-2 mRNA and protein: the model group had similar results to the treatment group (P>0.05); (3) Expression levels of VEGF mRNA and protein: The treatment group was significantly higher than the model group (P<0.05). In addition, the expression of VEGF also increased significantly in the continuous administration of the sham operation group. CONCLUSION: Anti-FGF-2 nanobody can be used for the treatment of angiogenesis. However, the expressions of VEGF will compensatorily increase after blocking FGF-2 in normal or pathological rats. 

Key words: corneal neovascularization, fibroblast growth factor 2, vascular endothelial growth factor, nanobody

中图分类号: