中国临床药理学与治疗学 ›› 2026, Vol. 31 ›› Issue (1): 88-95.doi: 10.12092/j.issn.1009-2501.2026.01.010
• 综述与讲座 • 上一篇
王志旺(
), 张悦, 全苹, 赵跃, 田蓓, 段海婧, 王瑞琼
收稿日期:2025-01-18
修回日期:2025-03-04
出版日期:2026-01-26
发布日期:2026-02-13
作者简介:王志旺,男,硕士,教授,博士生导师,研究方向:中药药理与毒理学。E-mail:基金资助:
Zhiwang WANG(
), Yue ZHANG, Ping QUAN, Yue ZHAO, Bei TIAN, Haijing DUAN, Ruiqiong WANG
Received:2025-01-18
Revised:2025-03-04
Online:2026-01-26
Published:2026-02-13
摘要:
哮喘是气道免疫炎症性疾病,反复的炎症反应引起的“损伤-修复”致使气道结构发生重新塑造(即“重塑”),而气道重塑是哮喘患者肺功能不可逆性降低的主要原因。白介素-17A(IL-17A)作为IL-17的一个特殊亚型,在哮喘气道炎症、杯状细胞(GC)化生与黏蛋白(Muc)高表达以及平滑肌(ASM)增厚等气道重塑病理学变化过程中发挥了关键的调控作用,故IL-17A调控哮喘气道重塑相关信号网络已成为近年来研究的新热点。本文从视黄酸相关孤儿受体γt(RORγt)、信号转导与转录激活因子3(STAT3)、转化生长因子-β1(TGF-β1)、核因子-κB(NF-κB)以及p38丝裂原活化蛋白激酶(p38 MAPK)等信号网络的角度,综述IL-17A调控哮喘气道重塑的作用机制,为哮喘气道重塑机制研究以及新药研发提供理论依据。
中图分类号:
王志旺, 张悦, 全苹, 赵跃, 田蓓, 段海婧, 王瑞琼. 白介素-17A介导的信号网络调控哮喘气道重塑的研究新进展[J]. 中国临床药理学与治疗学, 2026, 31(1): 88-95.
Zhiwang WANG, Yue ZHANG, Ping QUAN, Yue ZHAO, Bei TIAN, Haijing DUAN, Ruiqiong WANG. Progress in the study of interleukin-17A-mediated signaling network regulating airway remodeling in asthma[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 88-95.
| 信号网络 | 有效组分/ 小分子抑制剂 | 不同效应及组织病理变化 | 作用机制 | 参考文献 |
| RORγt | CpG寡脱氧核苷酸 | 恢复Th17细胞免疫平衡;抑制气道上皮GC增生、Muc5ac高表达;减少沉积;气道壁变薄 | 下调RORγt、IL-17A表达 | [ |
| 人参皂苷Rg1 | 减轻炎症反应 | IL-17A与RORγt表达下调 | [ | |
| BIX119(RORγt抑制剂) | 缓解气道炎症反应;降低气道高反应性 | 抑制IL-17A/RORγt信号 通路 | [ | |
| STAT3 | 阳和平喘颗粒 | 减轻炎症细胞浸润;抑制上皮下胶原纤维沉积 | IL-17A、 STAT3表达下调 | [ |
| 紫草素 | 抑制GC增生、Muc5ac高表达 | 下调IL-17A、p-STAT3的 表达 | [ | |
| TGF-β1 | 豆甾醇 | 减少炎症细胞数量;抑制ASMCs增殖 | IL-17A、TGF-β1蛋白表达 下调 | [ |
| CpG寡脱氧核苷酸 | 气道壁变薄;减少胶原沉积 | 下调 IL-17A、TGF-β1表达 | [ | |
| NF-κB | microRNA-133b | 缓解气道黏液高分泌;ASM变薄 | 下调IL-17A、NF-κB表达 | [ |
| BAY11- (NF-κB小分子抑制剂) | 减缓ASM紧张度;降低气道高反应性 | 抑制NF-κB核转位 | [ | |
| 罗汉果苷V | 减少炎症细胞浸润;抑制GC增生、ASMCs增殖; 降低气道高反应性 | 阻断IL-17A/NF-κB信号 通路 | [ | |
| p38 MAPK | SB203580 (p38 MAPK抑制剂) | 减轻气道炎症;抑制GC分化;Muc5ac高表达; 提高气道顺应性 | 下调IL-17A、p38 MAPK 表达 | [ |
| 毛喉鞘蕊花提取物 | 抑制GC增生;减缓ASM紧张度 | IL-17A、p38 MAPK表达 下降 | [ | |
| 合成生物碱 | 抑制ECM沉积 | 下调IL-17A/p38 MAPK信号通路 | [ | |
| VEGF | 茴香胶囊 | 降低气道胶原沉积占比;减缓支气管管壁 紧张度;改善肺组织纤维化 | IL-17A、VEGF mRNA表达 下调 | [ |
| TNF-α | MRS5980 (腺苷受体激动剂) | 抑制GC化生与胶原沉积;ASM变薄 | IL-17A、TNF-α表达下调 | [ |
| NLRP3 | MCC950 (NLRP3抑制剂) | 减轻炎症反应 | 下调NLRP3炎症小体活性 | [ |
表 1 有效成分/小分子抑制剂通过IL-17A介导的信号网络调控哮喘气道重塑的作用机制
Table 1 The mechanism of effective components/small molecule inhibitors regulating asthma airway remodeling through IL-17A mediated signaling network
| 信号网络 | 有效组分/ 小分子抑制剂 | 不同效应及组织病理变化 | 作用机制 | 参考文献 |
| RORγt | CpG寡脱氧核苷酸 | 恢复Th17细胞免疫平衡;抑制气道上皮GC增生、Muc5ac高表达;减少沉积;气道壁变薄 | 下调RORγt、IL-17A表达 | [ |
| 人参皂苷Rg1 | 减轻炎症反应 | IL-17A与RORγt表达下调 | [ | |
| BIX119(RORγt抑制剂) | 缓解气道炎症反应;降低气道高反应性 | 抑制IL-17A/RORγt信号 通路 | [ | |
| STAT3 | 阳和平喘颗粒 | 减轻炎症细胞浸润;抑制上皮下胶原纤维沉积 | IL-17A、 STAT3表达下调 | [ |
| 紫草素 | 抑制GC增生、Muc5ac高表达 | 下调IL-17A、p-STAT3的 表达 | [ | |
| TGF-β1 | 豆甾醇 | 减少炎症细胞数量;抑制ASMCs增殖 | IL-17A、TGF-β1蛋白表达 下调 | [ |
| CpG寡脱氧核苷酸 | 气道壁变薄;减少胶原沉积 | 下调 IL-17A、TGF-β1表达 | [ | |
| NF-κB | microRNA-133b | 缓解气道黏液高分泌;ASM变薄 | 下调IL-17A、NF-κB表达 | [ |
| BAY11- (NF-κB小分子抑制剂) | 减缓ASM紧张度;降低气道高反应性 | 抑制NF-κB核转位 | [ | |
| 罗汉果苷V | 减少炎症细胞浸润;抑制GC增生、ASMCs增殖; 降低气道高反应性 | 阻断IL-17A/NF-κB信号 通路 | [ | |
| p38 MAPK | SB203580 (p38 MAPK抑制剂) | 减轻气道炎症;抑制GC分化;Muc5ac高表达; 提高气道顺应性 | 下调IL-17A、p38 MAPK 表达 | [ |
| 毛喉鞘蕊花提取物 | 抑制GC增生;减缓ASM紧张度 | IL-17A、p38 MAPK表达 下降 | [ | |
| 合成生物碱 | 抑制ECM沉积 | 下调IL-17A/p38 MAPK信号通路 | [ | |
| VEGF | 茴香胶囊 | 降低气道胶原沉积占比;减缓支气管管壁 紧张度;改善肺组织纤维化 | IL-17A、VEGF mRNA表达 下调 | [ |
| TNF-α | MRS5980 (腺苷受体激动剂) | 抑制GC化生与胶原沉积;ASM变薄 | IL-17A、TNF-α表达下调 | [ |
| NLRP3 | MCC950 (NLRP3抑制剂) | 减轻炎症反应 | 下调NLRP3炎症小体活性 | [ |
| 1 |
黄柯婷, 王志旺, 梁可克, 等. IL-13 激活杯状细胞参与哮喘气道黏液高分泌的研究新进展[J]. 中国现代应用药学, 2023, 40 (10): 1416- 1421.
doi: 10.13748/j.cnki.issn1007-7693.20221880 |
| 2 |
Wang X, Gao Y, Yang Q, et al. Pingchuanning decoction attenuates airway inflammation by suppressing autophagy via phosphatidylinositol 3‐kinase/protein kinase B/mammalian target of rapamycin signaling pathway in rat models of asthma[J]. J Cell Biochem, 2019, 120 (3): 3833- 3844.
doi: 10.1002/jcb.27665 |
| 3 |
中国医药教育协会慢性气道疾病专业委员会, 中国哮喘联盟. 重度哮喘诊断与处理中国专家共识(2024)[J]. 中华医学杂志, 2024, 104 (20): 1759- 1789.
doi: 10.3760/cma.j.cn112137-20231117-01120 |
| 4 |
Varricchi G, Brightling CE, Grainge C, et al. Airway remodelling in asthma and the epithelium: On the edge of a new era[J]. Eur Respir J, 2024, 63 (4): 2301619.
doi: 10.1183/13993003.01619-2023 |
| 5 | 席建宏, 黄柯婷, 王志旺, 等. PI3K/Akt信号通路调控哮喘气道黏液高分泌的研究现状[J]. 中国临床药理学杂志, 2022, 38 (22): 2779- 2782. |
| 6 |
Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response?[J]. ERJ Open Res, 2020, 6 (2): 00364- 2019.
doi: 10.1183/23120541.00364-2019 |
| 7 |
Ritzmann F, Lunding LP, Bals R, et al. IL-17 cytokines and chronic lung diseases[J]. Cells, 2022, 11 (14): 2132.
doi: 10.3390/cells11142132 |
| 8 |
徐蕾, 贺新华, 陈昂, 等. 支气管哮喘患者外周血蛋白磷酸酶1A水平与气道重塑的关系[J]. 中国医药导报, 2021, 18 (25): 98- 102.
doi: 10.20047/j.issn1673-7210.2021.25.023 |
| 9 | Yu Q, Shi YJ, Shu C, et al. Andrographolide inhibition of Th17‐regulated cytokines and JAK1/STAT3 signaling in OVA‐stimulated asthma in mice[J]. Evid Based Complement Alternat Med, 2021, 2021 (1): 6862073. |
| 10 |
Rex DAB, Dagamajalu S, Gouda MM, et al. A comprehensive network map of IL-17A signaling pathway[J]. J Cell Commun Signal, 2023, 17 (1): 209- 215.
doi: 10.1007/s12079-022-00686-y |
| 11 |
Jetten AM, Cook DN. (Inverse) agonists of retinoic acid–related orphan receptor γ: regulation of immune responses, inflammation, and autoimmune disease[J]. Annu Rev Pharmacol Toxicol, 2020, 60 (1): 371- 390.
doi: 10.1146/annurev-pharmtox-010919-023711 |
| 12 |
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol, 2021, 42 (11): 1037- 1050.
doi: 10.1016/j.it.2021.09.005 |
| 13 |
Xie Y, Abel PW, Casale TB, et al. TH17 cells and corticosteroid insensitivity in severe asthma[J]. J Allergy Clin Immunol, 2022, 149 (2): 467- 479.
doi: 10.1016/j.jaci.2021.12.769 |
| 14 |
Li H, Ye Q, Lin Y, et al. CpG oligodeoxynucleotides attenuate RORγt-mediated Th17 response by restoring histone deacetylase-2 in cigarette smoke-exposure asthma[J]. Cell Biosci, 2021, 11 (1): 92.
doi: 10.1186/s13578-021-00607-3 |
| 15 | 周亚兵, 蒋思韵, 王利维, 等. PM2.5对哮喘大鼠IL-17/IL-23炎症介质的影响及人参皂苷Rg1干预研究[J]. 世界中医药, 2021, 16 (10): 1520- 1525. |
| 16 |
Lamb D, De Sousa D, Quast K, et al. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma[J]. Respir Res, 2021, 22 (1): 158.
doi: 10.1186/s12931-021-01743-7 |
| 17 |
Nikolskii AA, Shilovskiy IP, Barvinskaia ED, et al. Role of STAT3 transcription factor in pathogenesis of bronchial asthma[J]. Biochemistry (Mosc), 2021, 86 (11): 1489- 1501.
doi: 10.1134/s0006297921110122 |
| 18 |
Gavino AC, Nahmod K, Bharadwaj U, et al. STAT3 inhibition prevents lung inflammation, remodeling, and accumulation of Th2 and Th17 cells in a murine asthma model[J]. Allergy, 2016, 71 (12): 1684- 1692.
doi: 10.1111/all.12937 |
| 19 |
Camargo LN, Santos TM, Andrade FCP, et al. Bronchial vascular remodeling is attenuated by anti-IL-17 in asthmatic responses exacerbated by LPS[J]. Front Pharmacol, 2020, 11, 1269.
doi: 10.3389/fphar.2020.01269 |
| 20 |
吕川, 朱慧志, 刘向国, 等. 基于IL-6/JAK2/STAT3信号轴研究阳和平喘颗粒调控哮喘大鼠气道重塑作用机制[J]. 海南医学院学报, 2024, 30 (1): 15- 20+28.
doi: 10.13210/j.cnki.jhmu.20231030.001 |
| 21 |
Zhang Y, Chen L, Ouyang H. Shikonin alleviates asthma phenotypes in mice via an airway epithelial STAT3-dependent mechanism[J]. Open Med (Wars), 2024, 19 (1): 20241016.
doi: 10.1515/med-2024-1016 |
| 22 | Chen H, Guo SX, Zhang S, et al. MiRNA‐620 promotes TGF‐β1‐induced proliferation of airway smooth muscle cell through controlling PTEN/AKT signaling pathway[J]. Kaohsiung J Med Sci, 2020, 36 (11): 869- 877. |
| 23 |
Park YH, Oh EY, Han H, et al. Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway[J]. Exp Mol Med, 2019, 51 (5): 1- 12.
doi: 10.1038/s12276-019-0258-7 |
| 24 |
Zheng Y, Li L, Cai T. Cordyceps polysaccharide ameliorates airway inflammation in an ovalbumin-induced mouse model of asthma via TGF-β1/Smad signaling pathway[J]. Respir Physiol Neurobiol, 2020, 276, 103412.
doi: 10.1016/j.resp.2020.103412 |
| 25 |
Huang S, Zhou R, Yuan Y, et al. Stigmasterol alleviates airway inflammation in OVA-induced asthmatic mice via inhibiting the TGF-β1/Smad2 and IL-17A signaling pathways[J]. Aging (Albany NY), 2024, 16 (7): 6478.
doi: 10.18632/aging.205716 |
| 26 |
Kim DI, Song MK, Lee K. Diesel exhaust particulates enhances susceptibility of LPS-induced acute lung injury through upregulation of the IL-17 cytokine-derived TGF-β1/collagen I expression and activation of NLRP3 inflammasome signaling in mice[J]. Biomolecules, 2021, 11 (1): 67.
doi: 10.3390/biom11010067 |
| 27 |
Li H, Lin Y, Ye Q, et al. Airway inflammation and remodeling of cigarette smoking exposure ovalbumin-induced asthma is alleviated by CpG oligodeoxynucleotides via affecting dendritic cell-mediated Th17 polarization[J]. Int Immunopharmacol, 2020, 82, 106361.
doi: 10.1016/j.intimp.2020.106361 |
| 28 |
Liu D, Zhong Z, Karin M. NF-κB: a double-edged sword controlling inflammation[J]. Biomedicines, 2022, 10 (6): 1250.
doi: 10.3390/biomedicines10061250 |
| 29 |
Liao H, Chang X, Gao L, et al. IL-17A promotes tumorigenesis and upregulates PD-L1 expression in non-small cell lung cancer[J]. J Transl Med, 2023, 21 (1): 828.
doi: 10.1186/s12967-023-04365-3 |
| 30 |
Mohammadi B, Saghafi M, Khorasani AM, et al. Different levels of MUC5AC and MUC5B genes expression in severe allergic versus non-allergic asthma[J]. Life Res, 2022, 5 (4): 26.
doi: 10.53388/2022-0515-501 |
| 31 |
程慧雯, 袁文清, 魏水清, 等. miRNA-133b激活剂对过敏性鼻炎-哮喘综合征小鼠气道炎症的影响[J]. 青岛大学学报(医学版), 2022, 58 (5): 733- 738.
doi: 10.11712/jms.2096-5532.2022.58.123 |
| 32 |
Kudo M, Melton AC, Chen C, et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction[J]. Nat Med, 2012, 18 (4): 547- 554.
doi: 10.1038/nm.2684 |
| 33 |
Song JL, Qian B, Pan C, et al. Protective activity of mogroside V against ovalbumin‐induced experimental allergic asthma in Kunming mice[J]. J Food Biochem, 2019, 43 (9): e12973.
doi: 10.1111/jfbc.12973 |
| 34 |
Machado TR, Machado TR, Pascutti PG. The p38 MAPK inhibitors and their role in inflammatory diseases[J]. ChemistrySelect, 2021, 6 (23): 5729- 5742.
doi: 10.1002/slct.202100406 |
| 35 |
Saleem S. Targeting MAPK signaling: a promising approach for treating inflammatory lung disease[J]. Pathol Res Pract, 2024, 254, 155122.
doi: 10.1016/j.prp.2024.155122 |
| 36 |
Wang G, Pang Z, Hsu ACY, et al. Combined treatment with SB203580 and dexamethasone suppresses non-typeable Haemophilus influenzae-induced Th17 inflammation response in murine allergic asthma[J]. Eur J Pharmacol, 2019, 862, 172623.
doi: 10.1016/j.ejphar.2019.172623 |
| 37 |
彭小芝, 马朝芝, 夏雨, 等. 毛喉鞘蕊花提取物对大鼠哮喘模型炎症介质的影响及机制研究[J]. 天然产物研究与开发, 2019, 31 (9): 1515- 1519.
doi: 10.16333/j.1001-6880.2019.9.005 |
| 38 |
Ferreira LKDP, Ferreira LAMP, Barros GCB, et al. MHTP, a synthetic alkaloid, attenuates combined allergic rhinitis and asthma syndrome through downregulation of the p38/ERK1/2 MAPK signaling pathway in mice[J]. Int Immunopharmacol, 2021, 96, 107590.
doi: 10.1016/j.intimp.2021.107590 |
| 39 |
Tota M, Łacwik J, Laska J, et al. The role of eosinophil-derived neurotoxin and vascular endothelial growth factor in the pathogenesis of eosinophilic asthma[J]. Cells, 2023, 12 (9): 1326.
doi: 10.3390/cells12091326 |
| 40 |
阿依妮葛尔·麦麦提艾力, 阿布里米提·阿不列里木, 窦勤, 等. 基于TGF-β1/Smad2/3信号通路探讨茴香胶囊抗支气管哮喘作用及机制[J]. 中南药学, 2024, 22 (8): 2025- 2032.
doi: 10.7539/j.issn.1672-2981.2024.08.010 |
| 41 |
Razaghian A, Parvaneh N, Amirzargar AA, et al. Tumor necrosis factor-α (-308G> A) gene polymorphism and its association with asthma and atopy status[J]. Iran J Allergy Asthma Immunol, 2023, 22 (4): 337- 344.
doi: 10.18502/ijaai.v22i4.13606 |
| 42 |
Sgambellone S, Marri S, Catarinicchia S, et al. Adenosine A3 receptor (A3AR) agonist for the treatment of bleomycin-induced lung fibrosis in mice[J]. Int J Mol Sci, 2022, 23 (21): 13300.
doi: 10.3390/ijms232113300 |
| 43 |
Chen L, Hou W, Liu F, et al. Blockade of NLRP3/Caspase-1/IL-1β regulated Th17/Treg immune imbalance and attenuated the neutrophilic airway inflammation in an ovalbumin-induced murine model of asthma[J]. J Immunol Res, 2022, 2022 (1): 9444227.
doi: 10.1155/2022/9444227 |
| 44 |
陈凌, 茅松, 朱若尘, 等. NLRP3抑制剂MCC950对中性粒细胞性哮喘气道炎症的影响及其作用机制[J]. 中国生物制品学杂志, 2022, 35 (7): 829- 835.
doi: 10.13200/j.cnki.cjb.003652 |
| 45 |
Song M, Liang J, Wang L, et al. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment[J]. Int Immunopharmacol, 2023, 123, 110757.
doi: 10.1016/j.intimp.2023.110757 |
| 46 |
Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti–IL-17 receptor monoclonal antibody, in moderate to severe asthma[J]. Am J Respir Crit Care Med, 2013, 188 (11): 1294- 1302.
doi: 10.1164/rccm.201212-2318OC |
| 47 |
Vicovan AG, Petrescu DC, Constantinescu D, et al. Experimental insights on the use of Secukinumab and Magnolol in acute respiratory diseases in mice[J]. Biomedicines, 2024, 12 (7): 1538.
doi: 10.3390/biomedicines12071538 |
| 48 |
Berry SPDG, Dossou C, Kashif A, et al. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases[J]. Int Immunopharmacol, 2022, 102, 108402.
doi: 10.1016/j.intimp.2021.108402 |
| 49 |
Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives[J]. Front Immunol, 2023, 14, 1207641.
doi: 10.3389/fimmu.2023.1207641 |
| 50 |
Duchesne M, Okoye I, Lacy P. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response[J]. Front Immunol, 2022, 13, 975914.
doi: 10.3389/fimmu.2022.975914 |
| 51 |
Evasovic JM, Singer CA. Regulation of IL-17A and implications for TGF-β1 comodulation of airway smooth muscle remodeling in severe asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316 (5): L843- L868.
doi: 10.1152/ajplung.00416.2018 |
| [1] | 鲍八虎, 刘维英, 叶育才, 陈国荣, 孙静梓, 胡澳燕. miRNA与哮喘气道炎症及内型的研究进展[J]. 中国临床药理学与治疗学, 2024, 29(10): 1194-1200. |
| [2] | 李静, 马丽娟, 袁圆, 王捷, 郁长治, 赵军. 吸入性糖皮质激素布地奈德相关基因多态性与哮喘疗效的关系[J]. 中国临床药理学与治疗学, 2021, 26(11): 1250-1258. |
| [3] | 韩 超,杨 柳,张秋玲,潘竞锵,徐 俊. 黄芩苷对哮喘大鼠气道重塑作用的实验研究[J]. 中国临床药理学与治疗学, 2017, 22(7): 749-754. |
| [4] | 郑小平, 南淼, 王和敏, 余献丹, 郑阿迈. 噻托溴铵联合沙美特罗/氟替卡松对老年支气管哮喘患者肺通气功能的改善[J]. 中国临床药理学与治疗学, 2014, 19(10): 1163-1166. |
| [5] | 郑美梅, 王方剑, 岳铁刚, 董丽妍, 段成城. 阿奇霉素对支气管哮喘患者肺功能及血清结缔组织生长因子的影响[J]. 中国临床药理学与治疗学, 2013, 18(2): 194-197. |
| [6] | 沈巨信, 秦娥, 李明晖, 孙健, 周国忠. 呼出气冷凝液白三烯、8异前列腺素、硝酸盐/亚硝酸盐检测在哮喘中的应用及孟鲁司特对炎症指标的影响[J]. 中国临床药理学与治疗学, 2012, 17(7): 802-805. |
| [7] | 杨远, 彭小华, 林勇. CpG ODN对小鼠哮喘模型气道炎症及信号转导子和转录激活子6(STAT6)表达的影响[J]. 中国临床药理学与治疗学, 2010, 15(2): 149-153. |
| [8] | 郑仰明, 李昌崇, 张维溪, 管小俊. 哮喘气道重塑大鼠中磷酸化p38丝裂原活化蛋白激酶的表达对黏液细胞增殖的影响及布地奈德的干预作用[J]. 中国临床药理学与治疗学, 2009, 14(8): 866-871. |
| [9] | 刘雅丽, 张立, 金海燕, 安淑华. MMP-9/TIMP-1 在哮喘气道重塑中的作用及抗-RANTES 抗体的干预作用[J]. 中国临床药理学与治疗学, 2008, 13(9): 985-990. |
| [10] | 黄翠萍, 杨和平, 杨颖乔. 黄芪注射液对哮喘大鼠p38蛋白激酶和白细胞介素-5表达的影响[J]. 中国临床药理学与治疗学, 2008, 13(8): 900-904. |
| [11] | 林洁, 戴元荣, 赵初环, 翁海霞, 夏晓东, 何剑波. 罗红霉素对哮喘大鼠气道重塑中成肌纤维细胞、TGF-β1和 IFN-γ的影响[J]. 中国临床药理学与治疗学, 2008, 13(10): 1116-1121. |
| [12] | 吕小华, 吴铁, 覃冬云. 甘草对慢性小鼠哮喘模型气道炎症及外周血 Th1/Th2失衡的影响[J]. 中国临床药理学与治疗学, 2006, 11(5): 532-534. |
| [13] | 张伟, 林勇. 曲尼司特对实验性慢性阻塞性肺疾病气道重塑的干预[J]. 中国临床药理学与治疗学, 2006, 11(11): 1239-1242. |
| [14] | 黄翠萍, 杨和平, 张珍祥, 徐永健. 地塞米松抑制哮喘大鼠肺组织 p38 蛋白激酶的表达[J]. 中国临床药理学与治疗学, 2005, 10(5): 555-558. |
| [15] | 古兴宇, 刘晓菊. 染料木黄酮对哮喘患者核因子-κB 表达和肿瘤坏死因子-α分泌的影响[J]. 中国临床药理学与治疗学, 2004, 9(9): 1011-1015. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||