中国临床药理学与治疗学 ›› 2026, Vol. 31 ›› Issue (1): 133-144.doi: 10.12092/j.issn.1009-2501.2026.01.015
• 综述与讲座 • 上一篇
收稿日期:2025-03-03
修回日期:2025-05-07
出版日期:2026-01-26
发布日期:2026-02-13
通讯作者:
袁玉梅
E-mail:thecloudknows@yeah.net;yuanymei82@163.com
作者简介:赵世峰,男,本科,主任药师,研究方向:儿科临床药学。E-mail:基金资助:
Shifeng ZHAO(
), Hengbin CAO, Ronghua WANG, Yumei YUAN(
)
Received:2025-03-03
Revised:2025-05-07
Online:2026-01-26
Published:2026-02-13
Contact:
Yumei YUAN
E-mail:thecloudknows@yeah.net;yuanymei82@163.com
摘要:
Cefiderocol为全球首个铁载体偶联头孢菌素,凭借独特的作用机制和不依赖β-内酰胺酶抑制剂的高稳定性,Cefiderocol展现了对多重耐药革兰氏阴性菌或碳青霉烯类耐药革兰氏阴性菌的强大活性,是当前临床上治疗此类病原体的重要选择。本文对其作用机制、抗菌活性、药动学/药效学、临床研究、安全性及耐药机制等方面进行综述,以期为临床抗耐药革兰氏阴性菌感染提供参考。
中图分类号:
赵世峰, 曹恒斌, 汪荣华, 袁玉梅. 新型铁载体偶联头孢菌素——Cefiderocol[J]. 中国临床药理学与治疗学, 2026, 31(1): 133-144.
Shifeng ZHAO, Hengbin CAO, Ronghua WANG, Yumei YUAN. Cefiderocol: a novel siderophore cephalosporin[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 133-144.
| Organisms | MIC breakpoint (μg/mL) | |||||||||
| CLSI | FDA | EUCAST | ||||||||
| S | I | R | S | I | R | S | R | |||
| Enterobacterales* | ≤4 | 8 | ≥16 | ≤4 | 8 | ≥16 | ≤2 | >2 | ||
| Pseudomonas aeruginosa | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | ≤2 | >2 | ||
| Acinetobacter baumannii | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | IE | IE | ||
| Stenotrophomonas maltophilia | ≤1 | - | - | - | - | - | IE | IE | ||
表 1
Table 1 Breakpoints of cefiderocol approved by CLSI, FDA and EUCAST
| Organisms | MIC breakpoint (μg/mL) | |||||||||
| CLSI | FDA | EUCAST | ||||||||
| S | I | R | S | I | R | S | R | |||
| Enterobacterales* | ≤4 | 8 | ≥16 | ≤4 | 8 | ≥16 | ≤2 | >2 | ||
| Pseudomonas aeruginosa | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | ≤2 | >2 | ||
| Acinetobacter baumannii | ≤4 | 8 | ≥16 | ≤1 | 2 | ≥4 | IE | IE | ||
| Stenotrophomonas maltophilia | ≤1 | - | - | - | - | - | IE | IE | ||
| Organism (no. of isolates) | Antimicrobial agents | MIC (μg/mL) | CLSI MIC interpretation* | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 99.8 | 0.2 | 0.1 | |
| Cefepime | ≤0.12 | 16 | ≤0.06 to >64 | 85.9 | 3.0 | 11.2 | ||
| Ceftazidime-avibactam | 0.12 | 0.5 | ≤0.03 to >64 | 99.2 | NA | 0.8 | ||
| Ceftolozane-tazobactam | 0.25 | 2 | ≤0.06 to >64 | 91.7 | 1.8 | 6.6 | ||
| Ciprofloxacin | ≤0.12 | >8 | ≤0.06 to >8 | 74.5 | 3.2 | 22.3 | ||
| Meropenem | ≤0.06 | 0.12 | ≤0.06 to >64 | 96.8 | 0.4 | 2.9 | ||
| P. aeruginosa ( | Cefiderocol | 0.12 | 0.5 | ≤0.002 to 8 | 99.9 | 0.1 | 0 | |
| Cefepime | 4 | 16 | ≤0.06 to >64 | 82.9 | 9.1 | 8.0 | ||
| Ceftazidime-avibactam | 2 | 8 | ≤0.03 to >64 | 93.8 | NA | 6.2 | ||
| Ceftolozane-tazobactam | 0.5 | 2 | ≤0.06 to >64 | 94.0 | 1.0 | 5.0 | ||
| Ciprofloxacin | 0.25 | >8 | ≤0.06 to >8 | 70.8 | 6.5 | 22.7 | ||
| Meropenem | 0.5 | 16 | ≤0.06 to >64 | 77.2 | 5.8 | 17.0 | ||
| A. baumannii complex ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 96.0 | 1.3 | 2.7 | |
| Cefepime | 8 | >64 | ≤0.06 to >64 | 52.0 | 9.5 | 38.5 | ||
| Ceftazidime-avibactam | 16 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ceftolozane-tazobactam | 8 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ciprofloxacin | >8 | >8 | ≤0.12 to >8 | 40.0 | 0.7 | 59.3 | ||
| Meropenem | 16 | >64 | ≤0.06 to >64 | 46.2 | 1.3 | 52.5 | ||
表 2
Table 2 Cumulative antimicrobial susceptibility testing results from SIDERO-WT surveillance study (North America and Europe, 2014 to 2019)
| Organism (no. of isolates) | Antimicrobial agents | MIC (μg/mL) | CLSI MIC interpretation* | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 99.8 | 0.2 | 0.1 | |
| Cefepime | ≤0.12 | 16 | ≤0.06 to >64 | 85.9 | 3.0 | 11.2 | ||
| Ceftazidime-avibactam | 0.12 | 0.5 | ≤0.03 to >64 | 99.2 | NA | 0.8 | ||
| Ceftolozane-tazobactam | 0.25 | 2 | ≤0.06 to >64 | 91.7 | 1.8 | 6.6 | ||
| Ciprofloxacin | ≤0.12 | >8 | ≤0.06 to >8 | 74.5 | 3.2 | 22.3 | ||
| Meropenem | ≤0.06 | 0.12 | ≤0.06 to >64 | 96.8 | 0.4 | 2.9 | ||
| P. aeruginosa ( | Cefiderocol | 0.12 | 0.5 | ≤0.002 to 8 | 99.9 | 0.1 | 0 | |
| Cefepime | 4 | 16 | ≤0.06 to >64 | 82.9 | 9.1 | 8.0 | ||
| Ceftazidime-avibactam | 2 | 8 | ≤0.03 to >64 | 93.8 | NA | 6.2 | ||
| Ceftolozane-tazobactam | 0.5 | 2 | ≤0.06 to >64 | 94.0 | 1.0 | 5.0 | ||
| Ciprofloxacin | 0.25 | >8 | ≤0.06 to >8 | 70.8 | 6.5 | 22.7 | ||
| Meropenem | 0.5 | 16 | ≤0.06 to >64 | 77.2 | 5.8 | 17.0 | ||
| A. baumannii complex ( | Cefiderocol | 0.12 | 1 | ≤0.002 to >256 | 96.0 | 1.3 | 2.7 | |
| Cefepime | 8 | >64 | ≤0.06 to >64 | 52.0 | 9.5 | 38.5 | ||
| Ceftazidime-avibactam | 16 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ceftolozane-tazobactam | 8 | >64 | ≤0.06 to >64 | NA | NA | NA | ||
| Ciprofloxacin | >8 | >8 | ≤0.12 to >8 | 40.0 | 0.7 | 59.3 | ||
| Meropenem | 16 | >64 | ≤0.06 to >64 | 46.2 | 1.3 | 52.5 | ||
| Organism | Genotype (no. of isolates) | MIC (μg/mL) | CLSI MIC interpretation | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales | MBL (211)a | 2 | 4 | 0.06 to 128 | 91.5 | 5.7 | 2.8 | |
| VIM (113)a | 1 | 4 | 0.12 to 16 | 96.5 | 1.8 | 1.8 | ||
| NDM (96)a | 2 | 8 | 0.12 to 128 | 85.4 | 10.4 | 4.2 | ||
| KPC (382)b | 1 | 4 | 0.015 to 8 | 98.4 | 1.6 | 0 | ||
| OXA-48 group (256)c | 0.5 | 4 | 0.015 to 16 | 97.3 | 2.3 | 0.4 | ||
| Carbapenemase negative (154)d | 0.5 | 2 | 0.008 to 8 | 98.7 | 1.3 | 0 | ||
| P. aeruginosa | MBL (227)a | 0.25 | 2 | 0.008 to 4 | 100 | 0 | 0 | |
| VIM (200)a | 0.25 | 1 | 0.008 to 4 | 100 | 0 | 0 | ||
| IMP (25)a | 2 | 4 | 0.12 to 4 | 100 | 0 | 0 | ||
| GES (carbapenemase) (34)e | 0.25 | 1 | 0.06 to 1 | 100 | 0 | 0 | ||
| Carbapenemase negative ( | 0.25 | 1 | ≤0.002 to 8 | 99.8 | 0.2 | 0 | ||
| A. baumannii complex | MBL (25)a | 4 | 8 | 0.12 to >64 | 60.0 | 32.0 | 8.0 | |
| OXA-23 group ( | 0.25 | 2 | ≤0.002 to >256 | 95.6 | 1.9 | 2.6 | ||
| OXA-24 group (570)f | 0.5 | 8 | 0.004 to >256 | 89.5 | 1.9 | 8.6 | ||
| OXA-58 group (69)f | 1 | 1 | 0.06 to 4 | 100 | 0 | 0 | ||
| OXA-23and24 group (19)f | 0.5 | 2 | 0.06 to 2 | 100 | 0 | 0 | ||
| OXA-23and58 group (34)f | 0.25 | 0.5 | 0.06 to 0.5 | 100 | 0 | 0 | ||
| PER/VEB (103)g | 128 | >256 | 0.12 to >256 | 15.5 | 10.7 | 73.8 | ||
| Carbapenemase negative (309)d | 0.25 | 2 | 0.008 to >256 | 95.5 | 2.6 | 1.9 | ||
表 3
Table 3 Cumulative cefiderocol susceptibility testing results from SIDERO-WT surveillance study for molecularly characterized meropenem-nonsusceptible isolates (North America and Europe, 2014 to 2019)
| Organism | Genotype (no. of isolates) | MIC (μg/mL) | CLSI MIC interpretation | |||||
| MIC50 | MIC90 | Range | % S | % I | % R | |||
| Enterobacterales | MBL (211)a | 2 | 4 | 0.06 to 128 | 91.5 | 5.7 | 2.8 | |
| VIM (113)a | 1 | 4 | 0.12 to 16 | 96.5 | 1.8 | 1.8 | ||
| NDM (96)a | 2 | 8 | 0.12 to 128 | 85.4 | 10.4 | 4.2 | ||
| KPC (382)b | 1 | 4 | 0.015 to 8 | 98.4 | 1.6 | 0 | ||
| OXA-48 group (256)c | 0.5 | 4 | 0.015 to 16 | 97.3 | 2.3 | 0.4 | ||
| Carbapenemase negative (154)d | 0.5 | 2 | 0.008 to 8 | 98.7 | 1.3 | 0 | ||
| P. aeruginosa | MBL (227)a | 0.25 | 2 | 0.008 to 4 | 100 | 0 | 0 | |
| VIM (200)a | 0.25 | 1 | 0.008 to 4 | 100 | 0 | 0 | ||
| IMP (25)a | 2 | 4 | 0.12 to 4 | 100 | 0 | 0 | ||
| GES (carbapenemase) (34)e | 0.25 | 1 | 0.06 to 1 | 100 | 0 | 0 | ||
| Carbapenemase negative ( | 0.25 | 1 | ≤0.002 to 8 | 99.8 | 0.2 | 0 | ||
| A. baumannii complex | MBL (25)a | 4 | 8 | 0.12 to >64 | 60.0 | 32.0 | 8.0 | |
| OXA-23 group ( | 0.25 | 2 | ≤0.002 to >256 | 95.6 | 1.9 | 2.6 | ||
| OXA-24 group (570)f | 0.5 | 8 | 0.004 to >256 | 89.5 | 1.9 | 8.6 | ||
| OXA-58 group (69)f | 1 | 1 | 0.06 to 4 | 100 | 0 | 0 | ||
| OXA-23and24 group (19)f | 0.5 | 2 | 0.06 to 2 | 100 | 0 | 0 | ||
| OXA-23and58 group (34)f | 0.25 | 0.5 | 0.06 to 0.5 | 100 | 0 | 0 | ||
| PER/VEB (103)g | 128 | >256 | 0.12 to >256 | 15.5 | 10.7 | 73.8 | ||
| Carbapenemase negative (309)d | 0.25 | 2 | 0.008 to >256 | 95.5 | 2.6 | 1.9 | ||
| Trial | APEKS-cUTI (NCT02321800) | APEKS-NP (NCT03032380) | CREDIBLE-CR (NCT02714595) |
| Design | Phase 2, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, OL, P, PG, R, |
| Infections | cUTI, AUP, | NP (HAP/VAP/HCAP) | NP, cUTI, BSI/sepsis, |
| CR | NO | NO | YES |
| Treatment group | CFD 2 g q8 h vs. IMI/CIL 1 g/1 g q8 h | CFD 2 g q8 h vs. MER 2 g q8 h | CFD 2 g q8 h vs. BAT |
| Duration | 7-14 days | 7-14 days, or 21 days | 7-14 days, or 21 days for NP, BSI/sepsis,≥5 days for cUTI |
| Number of patients participating in efficacy analysis | 371 | 292 | 118 |
| Clinical outcome at TOC | 89.7% (226/252) vs. 87.4% (104/119) | 64.8% (94/145) vs. 66.7% (98/147) | NP: 50.0% (20/40) vs. 52.6% (10/19) cUTI: 70.6% (12/17) vs. 60.0% (3/5) BSI/sepsis: 43.5% (10/23) vs. 42.9% (6/14) OVERALL: 52.5% (42/80) vs. 50.0% (19/38) |
| Microbiological eradication at TOC | 73.0% (184/252) vs. 56.3% (67/119) | 40.7% (59/145) vs. 41.5% (61/147) | NP: 22.5% (9/40) vs. 21.1% (4/19) cUTI: 52.9% (9/17) vs. 20.0% (1/5) BSI/sepsis: 30.4% (7/23) vs. 28.6% (4/14) OVERALL: 31.3% (25/80) vs. 23.7% (9/38) |
| All-cause mortality at the end of the trial | — | 26.8% (38/142) vs. 23.3% (34/146) | NP: 42.2% (19/45) vs. 18.2% (4/22) cUTI: 15.4% (4/26) vs. 20.0% (2/10) BSI/sepsis: 36.7% (11/30) vs. 17.6% (3/17) OVERALL: 33.7% (34/101) vs. 18.4% (9/49) |
| Drug-related TEAEs | 9.0% (27/300) vs. 11.5% (17/148) | 9.5% (14/148) vs. 11.3% (17/150) | 14.9% (15/101) vs. 22.4% (11/49) |
表 4
Table 4 Summary of results of clinical trials of cefiderocol
| Trial | APEKS-cUTI (NCT02321800) | APEKS-NP (NCT03032380) | CREDIBLE-CR (NCT02714595) |
| Design | Phase 2, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, DB, P, PG, R, NI, | Phase 3, MC, MN, OL, P, PG, R, |
| Infections | cUTI, AUP, | NP (HAP/VAP/HCAP) | NP, cUTI, BSI/sepsis, |
| CR | NO | NO | YES |
| Treatment group | CFD 2 g q8 h vs. IMI/CIL 1 g/1 g q8 h | CFD 2 g q8 h vs. MER 2 g q8 h | CFD 2 g q8 h vs. BAT |
| Duration | 7-14 days | 7-14 days, or 21 days | 7-14 days, or 21 days for NP, BSI/sepsis,≥5 days for cUTI |
| Number of patients participating in efficacy analysis | 371 | 292 | 118 |
| Clinical outcome at TOC | 89.7% (226/252) vs. 87.4% (104/119) | 64.8% (94/145) vs. 66.7% (98/147) | NP: 50.0% (20/40) vs. 52.6% (10/19) cUTI: 70.6% (12/17) vs. 60.0% (3/5) BSI/sepsis: 43.5% (10/23) vs. 42.9% (6/14) OVERALL: 52.5% (42/80) vs. 50.0% (19/38) |
| Microbiological eradication at TOC | 73.0% (184/252) vs. 56.3% (67/119) | 40.7% (59/145) vs. 41.5% (61/147) | NP: 22.5% (9/40) vs. 21.1% (4/19) cUTI: 52.9% (9/17) vs. 20.0% (1/5) BSI/sepsis: 30.4% (7/23) vs. 28.6% (4/14) OVERALL: 31.3% (25/80) vs. 23.7% (9/38) |
| All-cause mortality at the end of the trial | — | 26.8% (38/142) vs. 23.3% (34/146) | NP: 42.2% (19/45) vs. 18.2% (4/22) cUTI: 15.4% (4/26) vs. 20.0% (2/10) BSI/sepsis: 36.7% (11/30) vs. 17.6% (3/17) OVERALL: 33.7% (34/101) vs. 18.4% (9/49) |
| Drug-related TEAEs | 9.0% (27/300) vs. 11.5% (17/148) | 9.5% (14/148) vs. 11.3% (17/150) | 14.9% (15/101) vs. 22.4% (11/49) |
| Mechanism | Enterobacterales | non-fermenting GNB | |||||
| E. coli | E. cloacae | K. pneumoniae | P. aeruginosa | A. baumannii | S. maltophilia | ||
| Mutations in genes of siderophore receptor | cirA, fiu, fecB, | cirA, fiu, | cirA, fiu, fhuA, fepA, | pirA, piuA, piuD, fecI, | pirA, piuA, | cirA, fciA, | |
| KPC variants | KPC-3,25,29,31, 33,39,41,44,50, | NA | KPC-2,31,33, 41,50,109,121, 203,216, | NA | NA | NA | |
| MBLs | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-5, VIM-1, | NDM-1,5, | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-1,5,9, | NA | |
| AmpC variants | AmpCEnt630 AmpCPDC-30 | AmpCEnt385,630 | AmpCDHA-1 | AmpCPDC-30,191 AmpCCMY-185,186 | NA | NA | |
| OXA-like | OXA-427 | OXA-427 | OXA-427 | OXA-427 | OXA-427 | NA | |
| ESBLs | PER-1,2,6,7, SHV-1, 2,2a,3,4,5,11,12, 26,28, | PER-1,2,6,7, | SHV-5,12, | PER-1,2,6,7, SHV-2a,12, GES-6, | PER-1,7, SHV-5, | NA | |
表 5
Table 5 The main β-lactamases and mutations in genes of siderophore receptor associated with cefiderocol resistance
| Mechanism | Enterobacterales | non-fermenting GNB | |||||
| E. coli | E. cloacae | K. pneumoniae | P. aeruginosa | A. baumannii | S. maltophilia | ||
| Mutations in genes of siderophore receptor | cirA, fiu, fecB, | cirA, fiu, | cirA, fiu, fhuA, fepA, | pirA, piuA, piuD, fecI, | pirA, piuA, | cirA, fciA, | |
| KPC variants | KPC-3,25,29,31, 33,39,41,44,50, | NA | KPC-2,31,33, 41,50,109,121, 203,216, | NA | NA | NA | |
| MBLs | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-5, VIM-1, | NDM-1,5, | NDM-1,5,7,9, SPM-1, AIM-1, GIM-1, VIM-2, | NDM-1,5,9, | NA | |
| AmpC variants | AmpCEnt630 AmpCPDC-30 | AmpCEnt385,630 | AmpCDHA-1 | AmpCPDC-30,191 AmpCCMY-185,186 | NA | NA | |
| OXA-like | OXA-427 | OXA-427 | OXA-427 | OXA-427 | OXA-427 | NA | |
| ESBLs | PER-1,2,6,7, SHV-1, 2,2a,3,4,5,11,12, 26,28, | PER-1,2,6,7, | SHV-5,12, | PER-1,2,6,7, SHV-2a,12, GES-6, | PER-1,7, SHV-5, | NA | |
| 1 | World Health Organization. WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance [EB/OL]. (2024-05-17) [2024/11/11]. https://www.who.int/publications/i/item/9789240093461. |
| 2 | GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050[J]. Lancet, 2024, 404 (10459): 1199- 1226. |
| 3 | 姜道利, 丑晓华, 刘志东, 等. 头孢他啶阿维巴坦治疗多重耐药革兰阴性菌感染的真实世界研究[J]. 中国临床药理学与治疗学, 2023, 28 (9): 1008- 1017. |
| 4 |
查娴, 陈大宇, 邵华. 替加环素和多黏菌素B治疗重症患者耐碳青霉烯类肠杆菌科细菌肺炎的疗效和安全性分析[J]. 中国临床药理学与治疗学, 2024, 29 (2): 154- 163.
doi: 10.12092/j.issn.1009-2501.2024.02.005 |
| 5 | Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria [J]. Front Cell Infect Microbiol, 2022, 15, 12: 823684. |
| 6 |
Tompkins K, van Duin D. Treatment for carbapenem-resistant enterobacterales infections: recent advances and future directions[J]. Eur J Clin Microbiol Infect Dis, 2021, 40 (10): 2053- 2068.
doi: 10.1007/s10096-021-04296-1 |
| 7 | Zeng M, Xia J, Zong Z, et al. Society of Bacterial Infection and Resistance of Chinese Medical Association; Expert Committee on Clinical Use of Antimicrobial Agents and Evaluation of Antimicrobial Resistance of the National Health Commission; Infectious Diseases Society of Chinese Medical Education Association. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli[J]. J Microbiol Immunol Infect, 2023, 56 (4): 653- 671. |
| 8 | Shionogi Inc. Cefiderocol FDA briefing document [EB/OL]. (2021-11-12) [2024/11/11]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/209445s004lbl.pdf. |
| 9 | European Medicine Company. Fetcroja [EB/OL]. (2020-04-29) [2024/11/11]. https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja#overview-section. |
| 10 | Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions[J]. Nat Rev Microbiol, 2020, 18 (3): 152- 163. |
| 11 | Bilitewski U, Blodgett JAV, Duhme-Klair AK, et al. Chemical and biological aspects of nutritional immunity-perspectives for new anti-infectives that target iron uptake systems[J]. Angew Chem Int Ed Engl, 2017, 56 (46): 14360- 14382. |
| 12 | Aoki T, Yoshizawa H, Yamawaki K, et al. Cefiderocol (S-649266), a new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship[J]. Eur J Med Chem, 2018, 15 (155): 847- 868. |
| 13 | Zhanel GG, Golden AR, Zelenitsky S, et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli[J]. Drugs, 2019, 79 (3): 271- 289. |
| 14 | Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria[J]. Antimicrob Agents Chemother, 2017, 62 (1): e01454- 17. |
| 15 | Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2016, 60 (12): 7396- 7401. |
| 16 | Yamano Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria[J]. Clin Infect Dis, 2019, 69 (Suppl7): S544- S551. |
| 17 | Clinical & Laboratory Standards Institute. AST News Update June 2023: The Latest on Testing Cefiderocol [EB/OL]. (2023-6-16) [2024/11/24]. https://clsi.org/about/blog/ast-news-update-june-2023-the-latest-on-testing-cefiderocol. |
| 18 | The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version14.0, 2024 [EB/OL]. (2024-1-1) [2024/11/26]. https://www.eucast.org/clinical_breakpoints. |
| 19 | Food and Drug Administration. Cefiderocol injection [EB/OL]. (2024-11-12) [2024/11/27]. https://www.fda.gov/drugs/development-resources/cefiderocol-injection. |
| 20 | Karlowsky JA, Hackel MA, Takemura M, et al. In vitro susceptibility of gram-negative pathogens to cefiderocol in five consecutive annual multinational SIDERO-WT surveillance studies, 2014 to 2019[J]. Antimicrob Agents Chemother, 2022, 66 (2): e0199021. |
| 21 | Wise MG, Karlowsky JA, Hackel MA, et al. In vitro activity of cefiderocol against meropenem-nonsusceptible gram-negative bacilli with defined β-lactamase carriage: SIDERO-WT surveillance studies, 2014-2019[J]. Microb Drug Resist, 2023, 29 (8): 360- 370. |
| 22 | Liu X, Lei T, Yang Y, et al. Structural basis of PER-1-mediated cefiderocol resistance and synergistic inhibition of PER-1 by cefiderocol in combination with avibactam or durlobactam in acinetobacter baumannii [J]. Antimicrob Agents Chemother, 2022, 20, 66(12): e0082822. |
| 23 | Saisho Y, Katsube T, White S, et al. Pharmacokinetics, safety, and tolerability of cefiderocol, a novel siderophore cephalosporin for gram-negative bacteria, in healthy subjects[J]. Antimicrob Agents Chemother, 2018, 62 (3): e02163- 17. |
| 24 | Miyazaki S, Katsube T, Shen H, et al. Metabolism, excretion, and pharmacokinetics of [14C]-cefiderocol (S-649266), a siderophore cephalosporin, in healthy subjects following intravenous administration[J]. J Clin Pharmacol, 2019, 59 (7): 958- 967. |
| 25 | Katsube T, Echols R, Arjona Ferreira JC, et al. Cefiderocol, a siderophore cephalosporin for gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment[J]. J Clin Pharmacol, 2017, 57 (5): 584- 591. |
| 26 | Katsube T, Wajima T, Ishibashi T, et al. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function [J]. Antimicrob Agents Chemother, 2016, 27, 61(1): e01381-16. |
| 27 | Katsube T, Saisho Y, Shimada J, et al. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects[J]. J Antimicrob Chemother, 2019, 74 (7): 1971- 1974. |
| 28 | Kawaguchi N, Katsube T, Echols R, et al. Intrapulmonary pharmacokinetic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, in patients with pneumonia and healthy subjects[J]. J Clin Pharmacol, 2022, 62 (5): 670- 680. |
| 29 | Bradley JS, Orchiston E, Portsmouth S, et al. Pharmacokinetics, safety and tolerability of single-dose or multiple-dose cefiderocol in hospitalized pediatric patients three months to less than eighteen years old with infections treated with standard-of-care antibiotics in the PEDI-CEFI phase 2 study[J]. Pediatr Infect Dis J, 2025, 44 (2): 136- 142. |
| 30 | Kidd JM, Abdelraouf K, Nicolau DP. Development of neutropenic murine models of iron overload and depletion to study the efficacy of siderophore-antibiotic conjugates [J]. Antimicrob Agents Chemother, 2019, 20, 64(1): e01961-19. |
| 31 | Matsumoto S, Singley CM, Hoover J, et al. Efficacy of cefiderocol against carbapenem-resistant gram-negative bacilli in immunocompetent-rat respiratory tract infection models recreating human plasma pharmacokinetics [J]. Antimicrob Agents Chemother, 2017, 24, 61(9): e00700-17. |
| 32 | Goutelle S, Ammour N, Ferry T, et al. Optimal dosage regimens of cefiderocol administered by short, prolonged or continuous infusion: a PK/PD simulation study[J]. J Antimicrob Chemother, 2024, 23, dkae464. |
| 33 | Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial[J]. Lancet Infect Dis, 2018, 18 (12): 1319- 1328. |
| 34 | Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial[J]. Lancet Infect Dis, 2021, 21 (2): 213- 225. |
| 35 | Bassetti M, Ariyasu M, Binkowitz B, et al. Designing A pathogen-focused study to address the high unmet medical need represented by carbapenem-resistant gram-negative pathogens-the international, multicenter, randomized, open-Label, phase 3 CREDIBLE-CR study [J]. Infect Drug Resist, 2019, 12: 3607-3623. |
| 36 | Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial[J]. Lancet Infect Dis, 2021, 21 (2): 226- 240. |
| 37 | Paterson DL, Kinoshita M, Baba T, et al. Outcomes with cefiderocol treatment in patients with bacteraemia enrolled into prospective phase 2 and phase 3 randomised clinical studies[J]. Infect Dis Ther, 2022, 11 (2): 853- 870. |
| 38 | Timsit JF, Paul M, Shields RK, et al. Cefiderocol for the treatment of infections due to metallo-B-lactamase-producing pathogens in the CREDIBLE-CR and APEKS-NP phase 3 randomized studies[J]. Clin Infect Dis, 2022, 75 (6): 1081- 1084. |
| 39 | Sanabria C, Migoya E, Mason JW, et al. Effect of cefiderocol, a siderophore cephalosporin, on QT/QTc interval in healthy adult subjects [J]. Clin Ther, 2019, 41(9): 1724-1736. e4. |
| 40 | Katsube T, Miyazaki S, Narukawa Y, et al. Drug-drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters[J]. Eur J Clin Pharmacol, 2018, 74 (7): 931- 938. |
| 41 | Wang L, Zhu J, Chen L, et al. Cefiderocol: clinical application and emergence of resistance[J]. Drug Resist Updat, 2024, 72, 101034. |
| 42 | Iovleva A, Fowler VG Jr, Doi Y. Treatment approaches for carbapenem-resistant acinetobacter baumannii infections[J]. Drugs, 2025, 85 (1): 21- 40. |
| 43 | Risco-Risco C, Henriquez-Camacho C, Herrera-Rueda M, et al. Cefiderocol versus best available therapy in the treatment of critically ill patients with severe infections due to resistant gram-negative bacteria: a systematic review and meta-analysis [J]. Antibiotics (Basel), 2024, 5, 13(11): 1048. |
| 44 | Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance [J]. Antibiotics (Basel), 2022, 27, 11(6): 723. |
| 45 | Kohira N, Hackel MA, Oota M, et al. In vitro antibacterial activities of cefiderocol against Gram-negative clinical strains isolated from China in 2020[J]. J Glob Antimicrob Resist, 2023, 32, 181- 186. |
| 46 | Zhao J, Pu D, Li Z, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against carbapenem-resistant hypervirulent Klebsiella pneumoniae in China [J]. Antimicrob Agents Chemother, 2023, 67(12): e0073523. |
| 47 | Liu X, Li Z, Zhang F, et al. In vitro antimicrobial activity of six novel β-lactam and β-lactamase inhibitor combinations and cefiderocol against NDM-producing Enterobacterales in China [J]. Int J Antimicrob Agents, 2024, 65(2): 107407. |
| 48 | Bianco G, Boattini M, Cricca M, et al. Updates on the activity, efficacy and emerging mechanisms of resistance to cefiderocol [J]. Curr Issues Mol Biol, 2024, 46(12): 14132-14153. |
| 49 | Galdino ACM, Vaillancourt M, Celedonio D, et al. Siderophores promote cooperative interspecies and intraspecies cross-protection against antibiotics in vitro[J]. Nat Microbiol, 2024, 9 (3): 631- 646. |
| 50 | Hobson CA, Cointe A, Jacquier H, et al. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect [J]. Clin Microbiol Infect, 2021, 27(8): 1172. e7-1172. e10. |
| 51 | Tamma PD, Heil EL, Justo JA, et al. Infectious diseases society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections [J]. Clin Infect Dis, 2024: ciae403. |
| 52 | Wright H, Harris PNA, Chatfield MD, et al. Investigator-driven randomised controlled trial of cefiderocol versus standard therapy for healthcare-associated and hospital-acquired gram-negative bloodstream infection: Study protocol (the GAME CHANGER trial): study protocol for an open-label, randomised controlled trial[J]. Trials, 2021, 22 (1): 889. |
| 53 | Onorato L, de Luca I, Monari C, et al. Cefiderocol either in monotherapy or combination versus best available therapy in the treatment of carbapenem-resistant acinetobacter baumannii infections: a systematic review and meta-analysis[J]. J Infect, 2024, 88 (3): 106113. |
| 54 | Karakonstantis S, Rousaki M, Vassilopoulou L, et al. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a systematic review and meta-analysis[J]. Clin Microbiol Infect, 2024, 30 (2): 178- 188. |
| 55 | Lewis RE, Palombo M, Diani E, et al. Synergistic activity of cefiderocol in combination with avibactam, sulbactam or tazobactam against carbapenem-resistant gram-negative bacteria[J]. Cells, 2024, 13 (16): 1315. |
| 56 | Clinicaltrials. gov. A DDI study to investigate PK and safety of cefiderocol in combination with xeruborbactam in healthy adult participants [EB/OL]. (2024-9-19) [2025/1/11]. https://clinicaltrials.gov/study/NCT06547554?cond=cefiderocol&page=2&rank=17. |
| 57 | Chinese Clinical Trial Registry. A multicenter, randomized, double-blind clinical study of cefiderocol for the treatment of complicated urinary tract infections caused by a gram-negative pathogen in Chinese adults in comparison with intravenous imipenem/cilastatin [EB/OL]. (2024-10-8) [2025/2/2]. https://www.chictr.org.cn/showprojEN.html?proj=222918. |
| [1] | 谢晶, 王小妮, 闵捷, 刘敏, 朱旭, 胡旺, 卢畅, 张冉, 周焕, 宫建. 盐酸达拉他韦片在中国健康受试者中的生物等效性研究[J]. 中国临床药理学与治疗学, 2026, 31(1): 55-62. |
| [2] | 刘媛, 崔诚, 余淼, 金文煜, 白银亮, 段雅彬, 方草, 贺建昌, 何艳, 黄桦, 霍仕霞, 金阳, 姜林, 姜哲, 焦正, 李学军, 李向阳, 李红健, 刘丽宏, 刘洋, 丘宏强, 孙凤, 孙建军, 王学昌, 王建华, 王振磊, 魏世杰, 颜晓文, 张雷, 张学农, 张宇馨, 赵军, 尹继业, 燕茹, 王新春, 刘东阳. 中国多民族人群精准用药研究价值与策略专家共识[J]. 中国临床药理学与治疗学, 2026, 31(1): 1-13. |
| [3] | 詹淑琴, 张慧敏, 张益萌. 促觉醒药物治疗发作性睡病研究进展[J]. 中国临床药理学与治疗学, 2025, 30(12): 1615-1624. |
| [4] | 李龙杰, 许海萍, 朱鑫妍, 何庆烽, 王燕慧, 陶应敏, 相小强, 叶梦凡. 内源性生物标志物在药物相互作用中的研究进展[J]. 中国临床药理学与治疗学, 2025, 30(12): 1692-1700. |
| [5] | 常钊, 周宇雪, 张胜男, 吕萌. 儿童肾病综合征患者他克莫司血药浓度变异性与临床疗效关系评价及影响因素分析[J]. 中国临床药理学与治疗学, 2025, 30(11): 1524-1529. |
| [6] | 曹尚, 饶玉清, 董成龙, 李紫薇, 阚红卫. 抗体药物的药物警戒:基于贝叶斯网络的分析与实践[J]. 中国临床药理学与治疗学, 2025, 30(11): 1541-1549. |
| [7] | 王琰, 夏玉明, 朱仁弟, 欧阳紫微, 程远志, 周仁鹏, 胡伟. 利托那韦片在中国健康受试者中的生物等效性试验[J]. 中国临床药理学与治疗学, 2025, 30(9): 1193-1199. |
| [8] | 魏园园, 马涛, 唐跃洲, 李琥波, 田晓瑜, 党云洁, 周旭. 基于生理药代动力学模型的维生素D个体化给药方案研究[J]. 中国临床药理学与治疗学, 2025, 30(8): 1067-1075. |
| [9] | 胡静, 张迪, 程二林. TLR-9(1237 T/C)基因多态性对糖尿病足患者复发感染的影响[J]. 中国临床药理学与治疗学, 2025, 30(7): 950-960. |
| [10] | 丁勤, 杨汝薇, 张声南, 阳国平, 裴奇. 时间-事件分析在评价抗多重耐药革兰阴性菌感染药物疗效中的应用[J]. 中国临床药理学与治疗学, 2025, 30(7): 998-1008. |
| [11] | 陈璐, 李晓斌, 马雯霞, 谢红瑜, 王文萍. 利伐沙班片在中国健康受试者体内的生物等效性研究[J]. 中国临床药理学与治疗学, 2025, 30(6): 789-795. |
| [12] | 田嬿, 杨心怡, 林双双, 何金杰, 王晶晶, 魏琼, 黄星星, 武晓捷. 单次口服YZJ-3058片在中国健康受试者中的安全性、药代动力学及药效动力学研究[J]. 中国临床药理学与治疗学, 2025, 30(6): 796-803. |
| [13] | 程俊霖, 邱润泽, 胡云芳, 刘江慧, 樊宏伟. 基于健康人群的药物临床试验筛选失败原因分析及影响因素探索[J]. 中国临床药理学与治疗学, 2025, 30(6): 804-811. |
| [14] | 张莉, 娄冬华. 基于非房室模型的药代动力学参数计算SAS宏工具[J]. 中国临床药理学与治疗学, 2025, 30(5): 608-621. |
| [15] | 宗杰, 胡瑄, 窦桂芳, 孟志云, 朱晓霞, 顾若兰, 吴卓娜, 关景丽, 甘慧. 厄他培南在老年肾功能不全患者中生理药动学模型的建立与应用[J]. 中国临床药理学与治疗学, 2025, 30(5): 622-630. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||