欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2007, Vol. 12 ›› Issue (12): 1332-1338.

• 综述与讲座 • 上一篇    下一篇

代谢组学分析技术平台和数据处理的新进展

任洪灿1, 王广基1, 阿基业1,2, 郝海平1, 孙建国1, 查伟斌1, 严蓓1   

  1. 1中国药科大学药物代谢动力学重点实验室,南京 210008,江苏;
    2瑞典 Umea 大学临床化学系医学生物学专业,SE 90185,Umea,瑞典
  • 收稿日期:2007-07-02 修回日期:2007-11-05 发布日期:2020-11-10
  • 通讯作者: 王广基,男,教授,博士生导师,研究方向:药物代谢动力学关键技术与平台研究,中药方剂复杂体系药物代谢动力学研究。Tel:025-85391035 E-mail:Guangjiwang@yahoo.com.cn
  • 作者简介:任洪灿,男,博士,研究方句:药物代谢动力学。Tel:02585391089 E-mail:renhongcan@gmail.com
  • 基金资助:
    国家自然科学基金项目(30630076;30572228);江苏省自然科学基金项目(BK2005098)

Advances of analysis technology and data processing in metabonomics study

REN Hong-can1, WANG Cuang-ji1,2, A Ji-ye1, HAO Hai-ping1, SUN Jian-guo1, ZHA Wei-bin1, YAN Bei1   

  1. 1Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210038, Jiangsu, China;
    2Department of Medical Biosciences, Clinical Chemistry, Umea University, SE 90185, Umea, Sweden
  • Received:2007-07-02 Revised:2007-11-05 Published:2020-11-10

摘要: 分析技术和生物计量学促进了代谢组学的飞速发展。代谢组学快速、灵敏、可定量、非侵入性以及系统性的特点,使其在新药研友、药物毒性筛选、疾病诊断等领域显示出广阔的前景。本文综述了代谢组学研究中的某些关键问题:样品处理方法,分析技术和数据处理的方法和原则,代谢组动态变化、生物标记物的鉴定和代谢途径的检索近年来的进展。评价了各种分析手段的优缺点,并展望代谢组学发展前景。

关键词: 代谢组学, 核磁共振, GC/MS, LC/MS, 生物标记物, 多变量数据分析, 模式识别, 代谢途径

Abstract: Metabonomics takes great progress withthe development of analysis technology and biometrics. Asa new member of omicssciences, metabonomics hasshown potentials in drug development, screening of drugtoxicity, and disease diagnosis for its sensitive, rapid,quantitative, noninvasive, and systemic characteristics.The key aspects of metabonomics, including preparationof samples, analysis technology, principle of data pro-cessing, traectory of metabolome, identification of bio-markers and indexation of metabolic pathway are reviewed in this article. The advantages and disadvantages of sev-eral popular analysis technologies for metabonomics areevaluated. Also the development prospect of metabonom-ics is expected.

Key words: metabonomics, nuclear magnetic reso-nance, GC/MS, LC/MS, biomarkers, multivariate analy-sis, patterm recognition, metabolic pathway

中图分类号: