[1] del Zoppo GJ. Stroke and neurovascular protection[J]. N Engl JMed, 2006, 354(6): 553-555. [2] Green AR, Shuaib A. Therapeutic strategies for the treatment of stroke[J]. Drug Discovery Today, 2006, 11(15/16): 681-693. [3] Lo EH. Experimental models, neurovascular mechanisms and translational issues in stroke research[J]. Br J Pharmacol, 2008, 153(Suppl 1): 396-405. [4] Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly[J]. Br J Pharmacol, 2008, 153(Suppl 1): 325-338. [5] Lo EH, Turgay D,MoskowitzMA. Mechanisms, challenges, and opportunities in stroke[J]. Nat Rev of Neurosci, 2003, 4(5): 399-416. [6] Cao G, Pei W, Ge H, et al. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis[J]. J Neurosci, 2002, 22(13): 5423-5431. [7] Bruno V, Battaglia G, Copani A, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs[J]. J Cereb Blood Flow Metab, 2001, 21(9): 1013-1033. [8] Horn J, Limburg M. Calcium antagonists for ischemic stroke: a systematic review[J]. Stroke, 2001, 32(2): 570-576. [9] Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain[J]. J Cereb Blood Flow Metab, 2001, 21(1): 2-14. [10] Kroemer G, Reed JC. Mitochondrial control of cell death [J]. NatMed, 2000, 6(5): 513-519. [11] Bernardi P, Petronilli V, Di LF, et al. A mitochondrial perspective on cell death[J]. Trends Biochem Sci, 2001, 26: 112-117. [12] Nicotera P, Leist M, Fava E, et al. Energy requirement for caspase activation and neuronal cell death[J]. Brain Pathol, 2000, 10(2): 276-282. [13] Nicotera P, Lipton SA. Excitotoxins in neuronal apoptosis and necrosis [J]. J Cereb Blood Flow Metab, 1999, 19 (6): 583-591. [14] Budd SL, Tenneti L, Lishnak T, et al. Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons[J]. Proc Natl Acad Sci USA, 2000, 97 (11): 6161-6166. [15] Martin A, Herr I, Jeremias I, et al. Cd95 ligand (fas-l/apo-11) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons [J]. J Neurosci, 1999, 19: 3809-3817. [16] Salvesen GS. A lysosomal protease enters the death scene [J]. J Clin Invest, 2001, 107(1): 21-22. [17] Report of the Stroke Progress Review Group[R]. 2002: (National Institute of Neurological Disorders and Stroke, Maryland) 1-116. [18] Petty MA, Lo EH. Junctional complexes of the bloodbrain barrier: permeability changes in neuroinflammation [J]. Prog Neurobiol, 2002, 68(5): 311-323. [19] Zhao BQ, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke[J]. Stroke, 2007, 38(2 Suppl): 748-752. [20] Rosell A, Cuadrado E, Ortega-Aznar A, et al. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke[J]. Stroke, 2008, 39(4): 1121-1126. [21] Zinaida S, Vexler A, Tang XN, et al. Inflammation in adult and neonatal stroke [J]. Clin Neurosci Res, 2006, 6: 293-313. [22] Han HS, Suk K. The function and integrity of the neurovascular unit rests upon the integration of the vascular and inflammatory cell systems[J]. Curr Neurovasc Res, 2005, 2(5): 409-423. [23] Fabry Z, Raine CS, Hart MN. Nervous tissue as an immune compartment: the dialect of the immune response in the CNS[J]. Immunol Today, 1994, 15(5): 218-224. [24] Romanic AM, White RF, Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size[J]. Stroke, 1998, 29(5): 1020-1030. [25] Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo [J]. Neuroscience, 1998, 86(4): 1245-1257. [26] Bazzoni G, Martinez OM, Orsenigo F, et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occluding [J]. J Biol Chem, 2000, 275(27): 20520-20526. [27] Ballabh P, Braun A, NedergaardM. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiol Dis, 2004, 16(1): 1-13. [28] Asahi M, Wang X, Mori T, et al. Effect of matrix metalloproteinase 9 gene knockout on the proteolysis of bloodbrain barrier and white matter components after cerebral ischemia[J]. J Neurosci, 2001, 21(19): 7724-7732. [29] Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women[J]. N Engl J Med, 2000, 342(12): 836-843. [30] Tanne D, Haim M, Boyko V, et al. Soluble intercellular adhesion molecule-1 and risk of future ischemic stroke: a nested case-control study from the bezafibrate infarction prevention (bip) study cohort[J]. Stroke, 2002, 33(9): 2182-2186. [31] Hughes PM, Allegrini PR, Rudin M, et al. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model[J]. J Cereb Blood Flow Metab, 2002, 22(3): 308-317. [32] Iadecola C, Niwa K, Nogawa S, et al. Reduced susceptibility to ischemic brain injury and n-methy ld-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice [J]. Proc Natl Acad Sci USA, 2001, 98: 1294-1299. [33] Boutin H, LeFeuvre RA, Horai R, et al. Role of IL-1alpha and IL-1beta in ischemic brain damage[J]. J Neurosci, 2001, 21(15): 5528-5534. [34] Yong VW. The potential use of MMP inhibitors to treat CNS diseases[J]. Exp Opin Invest Drugs, 1999, 8(3): 255-268. [35] Tsuji K, Aoki T, Tejima E, et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia[J]. Stroke, 2005, 36(9): 1954-1959. [36] Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia[J]. Glia, 2005, 50(4): 329-339. [37] Lee SR, Lo EH. Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation [J]. J Cereb Blood Flow Metab, 2004, 24(7): 720-727. [38] Wang X, Tsuji K, Lee SR, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke[J]. Stroke, 2004, 35(11 Suppl 1): 2726-2730. [39] Lee SR, Wang X, Tsuji K, et al. Extracellular proteolytic pathophy siology in the neurovascular unit after stroke[J]. Neurol Res, 2004, 26(8): 854-861. [40] Tsuji K, Aoki T, Tejima E, et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia[J]. Stroke, 2005, 36(9): 1954-1959. [41] Petty MA, Wettstein JG. White matter ischaemia[J]. Brain Res Rev, 1999, 31(1): 58-64. [42] Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy [J]. J Cereb Blood Flow Metab, 2004, 24(4): 351-371. [43] Zivin JA. Thrombolytic stroke therapy: past, present, and future[J]. Neurology, 1999, 53(1): 14-19. [44] Richard A, Odergren T, Ashwood T. Animal models of stroke: do they have value for discovering neuroprotective agents[J] ? Trends Pharmacol Sci, 2003, 24 (8): 402-408. [45] Mohr JP, Gautier JC, Hier DB, et al. Middle cerebral artery in stroke[M] (Barnett, HJM. et al. eds). Churchill Livingstone. Pathophysiology, Diagnosis andManagement, 1986, pp: 377-450. [46] Ringelstein EB, Biniek R, Weiller C, et al. Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization [J]. Neurology, 1992, 42(2): 289-298. [47] Stroke therapy academic industry roundtable. Recommendations for clinical trial evaluation of acute stroke therapies [J]. Stroke, 2001, 32(7): 1598-1606. [48] Stroke therapy academic industry roundtable. Recommendations for standards regarding preclinical neuroprotective and restorative drug development[J]. Stroke, 1999, 30 (12): 2752-2758. [49] Aneesh B, Singhal T, Lo EH. Advances in stroke neuroprotection: hyperoxia and beyond[J]. Neuroimag Clin N Am, 2005, 15(3): 697-720. [50] Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly[J]. Br J Pharmacol, 2008, 153(Suppl 1): 325-338. |