欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2010, Vol. 15 ›› Issue (5): 481-489.

• 专论 •    下一篇

代谢组学数据处理方法——主成分分析

阿基业   

  1. 中国药科大学药代动力学重点实验室 & 代谢组学研究室,南京 210009,江苏
  • 收稿日期:2010-03-11 修回日期:2010-04-24 出版日期:2010-05-26 发布日期:2020-09-16
  • 作者简介:E-mail: ajiye333@hotmail.com

Analysis of metabolomic data: principal component analysis

Jiye Aa   

  1. Key Lab of Drug Metabolism and Pharmacokinetics & Lab of Metabolomics, China Pharmaceutical University, Nanjing 21009, Jiangsu,China
  • Received:2010-03-11 Revised:2010-04-24 Online:2010-05-26 Published:2020-09-16

摘要: 代谢组学在生命科学领域得到了越来越广泛的应用并展现出良好的前景。代谢组学分析产生的含有大量变量的数据难以用常规方法进行分析,如何正确分析和解释代谢组学的数据是研究的关键。本文主要介绍了在代谢组学数据分析中占主导地位的主成分分析基本方法,旨在加强代谢组学数据分析的基础知识并规范数据分析的方法。

关键词: 代谢组学, 主成分分析, 偏最小二乘投影关联分析, 偏最小二乘投影判别分析, 正交偏最小二乘投影分析

Abstract: Metabolomics has been widely applied to life science and showing a promising perspective. Conventional statistic analysis is not applicable to the large, multivariate dataset generated by high-throughput metabolomic tool, while it's of crucial importance to analyze and interpret the dataset. This article reviews the basic methods of principal components analysis(PCA) that is popular in metabolomics study, aiming at strengthening the fundamental knowledge of PCA and standardizing the methods and procedures for data analysis.

Key words: Metabolomics, Principal components analysis(PCA), Partial least squares project to latent structure(PLS), Partial least squares project to latent structure-discriminant analysis(PLS-DA), Orthogonal partial least squares project to latent structure(OPLS)

中图分类号: