[1] Materson BJ. Variability in response to antihypertensive drugs[J]. Am J Med, 2007,120(4 Suppl 1):S10-20. [2] Arnett DK, Claas SA. Pharmacogenetics of antihypertensive treatment: detailing disciplinary dissonance[J]. Pharmacogenomics, 2009,10(8):1295-1307. [3] Bloem LJ, Manatunga AK, Tewksbury DA, et al. The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children[J]. J Clin Invest, 1995,95(3):948-953. [4] Hingorani AD, Jia H, Stevens PA, et al. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition[J]. J Hypertens, 1995,13(12 Pt 2):1602-1609. [5] Jiang X, Sheng H, Li J, et al. Association between renin-angiotensin system gene polymorphism and essential hypertension: a community-based study[J]. J Hum Hypertens, 2009,23(3):176-181. [6] Yu H, Lin S, Jin L, et al. Adenine/cytosine1166 polymorphism of the angiotensin II type 1 receptor gene and the antihypertensive response to angiotensin-converting enzyme inhibitors[J]. J Hypertens, 2009,12(Epub ahead of print) [7] Sugiyama T, Morita H, Kato N, et al. Lack of sex-specific effects on the association between angiotensin-converting enzyme gene polymorphism and hypertension in Japanese[J]. Hypertens Res, 1999,22(1):55-59. [8] McKenzie CA, Zhu X, Forrester TE, et al. A genome-wide search replicates evidence of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE) unlinked to the ACE gene[J]. BMC Med Genomics, 2008,1:23. [9] Baudin B. Angiotensin I-converting enzyme gene polymorphism and drug response[J]. Clin Chem Lab Med, 2000,38(9):853-856. [10] Hori Y, Takeyama Y, Ueda T, et al. Impaired transport of lipopolysaccharide across the hepatocytes in rats with cerulein-induced experimental pancreatitis[J]. Pancreas, 1998,16(2):148-153. [11] Mondorf UF, Russ A, Wiesemann A,et al. Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension[J]. Am J Hypertens, 1998,11(2):174-183. [12] Stavroulakis GA, Makris TK, Krespi PG, et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin-converting enzyme gene polymorphism[J]. Cardiovasc Drugs Ther, 2000,14(4):427-432. [13] Liu Q, Lei H, Wang X. The relationship of angiotensin-converting enzyme gene to essential hypertension and drug treatment in Chongqing[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2000,17(5):340-342. [14] Caprioli J, Mele C, Mossali C, et al. Polymorphisms of EDNRB, ATG, and ACE genes in salt-sensitive hypertension[J]. Can J Physiol Pharmacol, 2008,86(8):505-510. [15] Miller JA, Thai K, Scholey JW. Angiotensin II type 1 receptor gene polymorphism predicts response to losartan and angiotensin II[J]. Kidney Int, 1999,56(6):2173-2180. [16] Ortlepp JR, Hanrath P, Mevissen V, et al. Variants of the CYP11B2 gene predict response to therapy with candesartan[J]. Eur J Pharmacol, 2002,445(1/2):151-152. [17] Redon J, Luque-Otero M, Martell N, et al. Renin-angiotensin system gene polymorphisms: relationship with blood pressure and microalbuminuria in telmisartan-treated hypertensive patients[J]. Pharmacogenomics J, 2005,5(1):14-20. [18] Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension[J]. Lancet, 1997,349(9062):1353-1357. [19] Glorioso N, Manunta P, Filigheddu F, et al. The role of alpha-adducin poly morphism in blood pressure and sodium handling regulation may not be excluded by a negative association study[J]. Hypertension, 1999,34(4 Pt 1):649-654. [20] Kato N, Sugiyama T, Nabika T, et al. Lack of association between the alpha-adducin locus and essential hypertension in the Japanese population[J]. Hypertension, 1998,31(3):730-733. [21] Meckley LM, Veenstra DL. Screening for the alpha-adducin Gly460Trp variant in hypertensive patients: a cost-effectiveness analysis[J]. Pharmacogenet Genomics, 2006,16(2):139-147. [22] Sciarrone MT, Stella P, Barlassina C, et al. ACE and alpha-adducin polymorphism as markers of individual response to diuretic therapy[J]. Hypertension, 2003,41(3):398-403. [23] Lu LH, Chen H, Yu L. Association of alpha-adducin and angiotensin converting enzyme gene polymorphisms with salt-sensitive hypertension and early renal injury[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2008,25(2):132-135. [24] Brand E, Wang JG, Herrmann SM, et al. An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism[J]. J Hypertens, 2003,21(4):729-737. [25] Danoviz ME, Pereira AC, Mill JG, et al. Hypertension, obesity and GNB 3 gene variants[J]. Clin Exp Pharmacol Physiol, 2006,33(3):248-252. [26] Wang X, Bai H, Fan P, et al. Analysis of the GNB3 gene 825C/T polymorphism in non-obese and obese Chinese[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2008,25(6):670-674. [27] Maitland-van der Zee AH, Turner ST, Schwartz GL, et al. A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide[J]. Pharmacogenet Genomics, 2005,15(5):287-293. [28] Manunta P, Lavery G, Lanzani C, et al. Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation[J]. Hypertension, 2008,52(2):366-372. [29] Turner ST, Bailey KR, Fridley BL, et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic[J]. Hypertension, 2008,52(2):359-65. [30] Rodwell GE, Sonu R, Zahn JM, et al. A transcriptional profile of aging in the human kidney[J]. PLoS Biol, 2004,2(12):e427. [31] Lanfear DE, Jones PG, Marsh S, et al. Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome[J]. JAMA, 2005,294(12):1526-33. [32] Kaye DM, Smirk B, Williams C, et al. Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure[J]. Pharmacogenetics, 2003,13(7):379-82. [33] Liu J, Liu ZQ, Yu BN, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension[J]. Clin Pharmacol Ther, 2006,80(1):23-32. [34] Johnson JA, Zineh I, Puckett BJ, et al. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol[J]. Clin Pharmacol Ther, 2003,74(1):44-52. [35] Liu J, Liu ZQ, Tan ZR, et al. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol[J]. Clin Pharmacol Ther, 2003,74(4):372-379. [36] Sofowora GG, Dishy V, Muszkat M, et al. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade[J]. Clin Pharmacol Ther, 2003,73(4):366-371. [37] Lemaitre RN, Heckbert SR, Sotoodehnia N, et al. beta1- and beta2-adrenergic receptor gene variation, beta-blocker use and risk of myocardial infarction and stroke[J]. Am J Hypertens, 2008,21(3):290-296. [38] Hindorff LA, Heckbert SR, Psaty BM, et al. beta(2)-Adrenergic receptor polymorphisms and determinants of cardiovascular risk: the Cardiovascular Health Study[J]. Am J Hypertens, 2005,18(3):392-397. [39] Filigheddu F, Argiolas G, Bulla E, et al. Clinical variables, not RAAS polymorphisms, predict blood pressure response to ACE inhibitors in Sardinians[J]. Pharmacogenomics, 2008,9(10):1419-1427. [40] Gluszek J, Jankowska K. Is there relationship between the A1166C polymorphism of the angiotensin II receptor AT1 and plasma renin activity, insulin resistance and reduction of blood pressure after angiotensin-converting enzyme inhibitor therapy[J]. Pol Arch Med Wewn, 2008,118(4):194-200. [41] Kurland L, Hallberg P, Melhus H, et al. The relationship between the plasma concentration of irbesartan and the antihypertensive response is disclosed by an angiotensin II type 1 receptor polymorphism: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs. Atenolol (SILVHIA) Trial[J]. Am J Hypertens, 2008,21(7):836-839. [42] Bremer T, Man A, Kask K, et al. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension[J]. Pharmacogenomics, 2006,7(3):271-279. [43] Langaee TY, Gong Y, Yarandi HN, et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil[J]. Clin Pharmacol Ther, 2007,81(3):386-391. [44] Beitelshees AL, Gong Y, Wang D, et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST)[J]. Pharmacogenet Genomics, 2007,17(9):719-729. [45] Kelley-Hedgepeth A, Peter I, Kip K, et al. The protective effect of KCNMB1 E65K against hypertension is restricted to blood pressure treatment with beta-blockade[J]. J Hum Hypertens, 2008,22(7):512-515. [46] Milionis HJ, Kostapanos MS, Vakalis K, et al. Impact of renin-angiotensin-aldosterone system genes on the treatment response of patients with hypertension and metabolic syndrome[J]. J Renin Angiotensin Aldosterone Syst, 2007,8(4):181-189. [47] Frazier L, Turner ST, Schwartz GL, et al. Multilocus effects of the renin-angiotensin-aldosterone system genes on blood pressure response to a thiazide diuretic[J]. Pharmacogenomics J, 2004,4(1):17-23. [48] Schelleman H, Klungel OH, Witteman JC, et al. Angiotensinogen M235T polymorphism and the risk of myocardial infarction and stroke among hypertensive patients on ACE-inhibitors or beta-blockers[J]. Eur J Hum Genet, 2007,15(4):478-484. [49] Dudley C, Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes[J]. J Hypertens, 1996,14(2):259-262. [50] Lynch AI, Boerwinkle E, Davis BR, et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension[J]. JAMA, 2008,299(3):296-307. [51] Pacanowski MA, Gong Y, Cooper-Dehoff RM, et al. beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension[J]. Clin Pharmacol Ther, 2008,84(6):715-721. [52] Karlsson J, Lind L, Hallberg P, et al. Beta1-adrenergic receptor gene polymorphisms and response to beta1-adrenergic receptor blockade in patients with essential hypertension[J]. Clin Cardiol, 2004,27(6):347-350. [53] Dishy V, Sofowora GG, Xie HG, et al. The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization[J]. N Engl J Med, 2001,345(14):1030-1035. [54] Schelleman H, Klungel OH, Witteman JC, et al. Interaction between polymorphisms in the renin-angiotensin-system and angiotensin-converting enzyme inhibitor or beta-blocker use and the risk of myocardial infarction and stroke[J]. Pharmacogenomics J, 2008,8(6):400-407. [55] Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study[J]. Circulation, 2005,111(25):3374-3383. [56] Yuan H, Huang Z, Yang G, et al. Effects of polymorphism of the beta(1) adrenoreceptor and CYP2D6 on the therapeutic effects of metoprolol[J]. J Int Med Res, 2008,36(6):1354-1362. [57] Chen G, Jiang S, Mao G, et al. CYP2C9 Ile359Leu polymorphism, plasma irbesartan concentration and acute blood pressure reductions in response to irbesartan treatment in Chinese hypertensive patients[J]. Methods Find Exp Clin Pharmacol, 2006,28(1):19-24. [58] 刘昭前,周宏灏. 个体化药物治疗的新时代[J]. 中国临床药理学与治疗学, 2007,12(1):1-6. |