[1] Owens DR. Repaglinide - prandial glucose regulator: a new class of oral antidiabetic drugs[J]. Diabet Med, 1999,15(4): S28-S36. [2] 杨华章,陈亮,崔炎棠. 降糖新药瑞格列奈的研究进展[J]. 中国实用内科杂志, 2004, 20(4): 253-254. [3] 胡晋红, 李珍, 刘晓东, 等. 国产与进口降糖药瑞格列奈片的生物等效性研究[J]. 第二军医大学学报, 2001, 22( 5): 432-434. [4] Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics[J]. Clin Pharmacol Ther, 2005, 77(6): 468-478. [5] Zair ZM, Eloranta JJ, Stieger B, et al. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney [J]. Pharmacogenomics, 2008, 9(5): 597-624. [6] Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties[J]. Pflugers Arch, 2004,447(5): 653-665. [7] Niemi M. Role of OATP transporters in the disposition of drugs[J]. Pharmacogenomics, 2007, 8(7): 787-802. [8] Nozawa T, Nakajima M, Tamai I, et al. Genetic polymorphisms of human organic anion transporters OATP2C(SLC21A6) and OATP2B(SLC21A9) : allele frequencies in the Japanese population and functional analysis[J]. J Pharm Acol Exp Ther, 2002,302 (2) :804-813. [9] Niemi M, Schaeffeler E , Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide2C (OATP2C , SLCO1B1) [J].Pharmacogenetics, 2004,14 (7) :429-440. [10] Kim EY, Cho DY, Shin HJ, et al. Duplex pyrosequencing assay of the 388A > Gand 521T> C SLCO1B1 polymorphisms in three Asian populations [J]. Clin Chim Acta, 2008,388 (1P2) :68-72. [11] Kameyama Y, Yamashita K, Kobayashi K, et al. Functional characterization of SLCO1B1 (OATP2C) variants, SLCO1B1*5 , SLCO1B1*15 and SLCO1B1*15 +C1007G, by using transient expression systems of HeLa and HEK293 cells[J]. Pharmacogenet Genomics, 2005,15 (7) :513-522. [12] Kalliokoski A , Backman JT, Neuvonen PJ , et al. Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide [J].Pharmacogenet Genomics , 2008 ,18 (11) :937-942. [13] Deng JW, Song IS , Shin HJ , et al. The effect of SL2CO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent : the contribution of transporting activity changes by SLCO1B1*15 [J]. Pharmacogenet Genomics, 2008,18 (5) :424-433. [14] Kalliokoski A, Neuvonen M, Neuvonen PJ, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide[J]. J Clin Pharmacol, 2008, 48 (3) : 311-321. [15] Kalliokoski A , Backman JT, Kurkinen KJ , et al. Effects of Gemfibrozil and Atorvastatin on the Pharmacokinetics of Repaglinide in Relation to SLCO1B1 Polymorphism[J]. Clin Pharmacol Ther, 2008,84 (4) :488-496. [16] 阳国平, 宋敏, 谭鸿毅, 等.有机阴离子转运多肽1B1(OATP1B1)遗传多态性对瑞格列奈药动学的影响[J].中国临床药理学与治疗学, 2009, 14(9): 990-994. [17] Bidstrup TB, Bjnsdottir I, Sidelmann UG, et al. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide[J].Br J Clin Pharmaco, 2003, l56: 305-314. [18] Ruzilawati AB, Gan SH. CYP3A4 genetic polymorphism influences repaglinide's pharmacolinetics[J]. Pharmacology,2010,85(6):357-364. [19] Niemi M, Leathart J B, Neuvonen M, et al. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide[J].Clin Pharmacol Ther, 2003, 74(4): 380-387. [20] Bidstrup TB, Damkier P, Olsen AK, et al. The impact of CYP2C8 polymorphism and grapefruit juice on the pharmacokineties of repaglinide[J]. Br J Clin Pharmacol, 2006, 61(1): 49-57. [21] Rodríguez-Antona C, Niemi M, Backman JT, et al. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism[J]. Pharmacogenomics J, 2007, 8(4): 268-277. [22] Hansen AM, Christensen IT, Hansen JB, et al. Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor l[J].Diabetes, 2002, 51(9): 2789-2795. [23] Hansen AM, Hansen JB, Carr RD, et al. Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP)channels[J].Br J Pharmacol, 2005, 144(4): 551-557. [24] Tanja BB, Nicolaj S, Per Damkier, et al. Rifampicin seems to act as both an inducer and an inhibitor of the metabolism of repaglinide[J]. Eur J Clin Pharmacol,2004, 60(2): 109-114. [25] Niemi M, Backman JT, Neuvonen M, et al. Effects of gemfibrozil,itraconazole,and their combination on the pharmacokinetics and pharmacodynamics of repaglinide:potentially hazardous interaction between gemfibrozil and regaplinide[J]. Diabetoligia, 2003, 46(3): 347-351. [26] Ashfield R, Gribble FM, Ashcroft SJ, et al. Identfication of the high-affinity tolbutamide site on the SURI subunit of the K(ATP)channel[J].Diabetes, 1999, 48(6): 1341-1347. [27] Kajosaari LI, Niemi M, Neuvonen M, et al. Cyclosporine markedly raises the plasma concentrations of repaglinide[J]. Clin Pharmacol Ther, 2005, 78(4): 388-399. [28] Kajosaari LI, Jaakkola T, Neuvonen PJ, et al. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide[J]. Eur J Clin Pharmacol, 2006, 62(3): 217-223. [29] Niemi M, Kajosaari LI, Neuvonen M, et al. The CYP2C8 inhibitor trimethoprim increases the plasmaconcentrations of repaglinide in healthy subjects[J].Br J Clin Pharmacol, 2003, 57(4): 441-447. |