[1] Elliot DJ, Suharjono, Lewis BC, et al. Identification of the human cytochromes P450 catalysing the rate-limiting pathways of gliclazide elimination [J]. Br J Clin Pharmacol,2007, 64(4): 450-457. [2] 黄作君, 黎月玲, 黄民. CYP2C19基因多态性与磺酰脲类降糖药药代动力学药效学相关性的研究进展[J]. 中国临床药理学与治疗学,2007, 12(2): 219-223. [3] Ragia G, Petridis I, Christakidis D, et al. Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas[J]. Pharmacogenomics, 2009, 10(11): 1781-1787. [4] Gokalp O, Gunes A, Cam H, et al. Mild hypoglycaemic attacks induced by sulphonylureas related to CYP2C9, CYP2C19 and CYP2C8 polymorphisms in routine clinical setting[J]. Eur J Clin Pharmacol, 2011, 67(12): 1223-1229. [5] 赵树进, 袁进. CYP2C19基因多态性的分子学机制、基因型检测及对药物代谢的影响[J]. 广东医学, 2006, 27(8): 1268-1270. [6] 陈騉, 王睿. 药物代谢酶细胞色素P450 2C9研究进展[J]. 中国临床药理学与治疗学, 2004, 9(6): 601-606. [7] 严非,夏春华,熊玉卿. CYP2C19基因多态性对药物代谢的影响及其个体化用药[J]. 中国临床药理学与治疗学, 2010, 15(8): 949-952. [8] Imai J, Ieiri I, Mamiya K. Polymorphism of the cytochrome P450(CYP)2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus[J]. Pharmacogenetics, 2000, 10(1): 85-92. [9] 张志贤, 常福厚. 细胞色素P450 2C19基因多态性研究进展[J]. 中国公共卫生, 2010, 26(3): 365-366. [10] 赵伟红, 陈枢青. 细胞色素P450 2C19基因多态性的研究进展[J]. 宁波大学学报:理工版, 2004, 17(2): 230-233. [11] DeMorais CM, Wilkinson GR, Blaisdell J, et al . The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans [J]. J Biol Chem, 1994, 269 (22): 15419-15422. [12] 付良青, 吴德政. 细胞色素氧化酶P450 2C19的研究进展[J]. 国外医学药学分册, 2001, 28(2): 74-78. [13] 陈欣, 李玉珍, 方冀. CYP3A4代谢药物的特点及其多态性的研究现状[J]. 中国药房, 2010, 21(22): 2097-2098. [14] Hu YF, Zhou HH. Contribution of genetic polymorphisms of the CYP3A4. CYP3A5 and MDRI genes to cyclosporine disposition [J]. Chin Pharmacol Bull, 2005, 21(3): 257-261. [15] 穆殿平, 徐为人, 高仲阳. 细胞色素P450 3A4基因多态性及对药物代谢的影响[J]. 中国药学杂志, 2008, 43(6): 405-408. [16] Sata F, Sapone A, Elizondo G, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity[J]. Clin Pharmacol Ther, 2000, 67(1): 48-56. [17] 周君霞, 沈行良. 细胞色素P450 2C9基因多态性影响药物代谢动力学的研究[J]. 临床荟萃, 2008, 23(12): 908-910. [18] Xu H, Williams KM, Liauw WS, et al. Effects of St John's wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide[J]. Br J Pharmacol, 2008, 153(7): 1579-1586. [19] Zhang Y, Si D, Chen X, et al. Influence of CYP2C9 and CYP2C19 genetic Polymorphism on pharmacokinetics of gliclazide MR in Chinese subjects [J]. Br J Clin Pharmacol, 2007, 64(1): 67-74. [20] Niemi M, Cascorbi I, Timm R, et al. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes[J]. Clin Pharmacol Ther, 2002, 72(3): 326-32. [21] Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiton toxicity to phenytoin[J]. Pharmacogenetics, 2001, 11(9): 803-808. [22] 李健, 闻思远, 王睿, 等. 细胞色素P450 CYP2C9基因多态性对甲苯磺丁脲代谢动力学的影响[J]. 药学学报, 2005, 40(8): 695-699. [23] 李明, 尹丽敏. 沿海汉族人群CYP2C9基因多态性与甲苯磺丁脲代谢活性关系[J]. 中国药物与临床, 2010, 10(2): 140-143. [24] 张琦, 彭妙官, 蒋培培, 等. 磺酰脲类药物致2型糖尿病患者低血糖与CYP2C9基因型关系初步研究[J]. 药物不良反应杂志, 2008, 10(6): 387-391. [25] 熊晓敏, 曾彩雯, 夏春华.细胞色素P4502C9基因多态性对健康人体内格列喹酮药代动力学的影响 [J]. 中国临床药理学杂志, 2011, 27 (10): 759-761. [26] Wester MR, Lasker JM, Johnson EF, et al. CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes[J]. Drug Metab Dispos, 2000, 28(3): 354-359. [27] Tan B, Zhang YF, Chen XY, et al. The effects of CYP2C9 and CYP2C19 genetic polymorphi sms on the pharmacokinetics and pharmacodynamics of glipizide in Chinese subjects[J]. Eur J Clin Pharmacol, 2010, 66(2): 145-151. [28] Holstein A, Hahn M, Patzer O, et al. Impact of clinical factors and CYP2C19 variants for the risk of severe sulfonylurea-induced hypoglycemia[J]. Eur J Clin Pharmacol, 2011, 67(5): 471-476. [29] Naritiomi Y, Terashita S, Kagayama A. Identification and relative contributions of human cytochrome P450 isoforms involved in the metabolism of glibenclamide and lansoprazole: evaluation of an approach based on the in vitro substrate disappearance rate[J]. Xenobiotica, 2004, 34(5): 415-427. [30] Zhou L, Naraharisetti SB, Liu L, et al. Contributions of Human Cytochrome P450 Enzymes to Glyburide Metabolism[J]. Biopharm Drug Dispos, 2010, 31(4): 228-242. [31] Lepper ER, Baker SD, Permenter M, et al. Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients[J]. Clin Cancer Res, 2005, 11(20): 7398-7404. [32] Henningsson A, Marsh S, Loos WJ, et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel[J]. Clin Cancer Res, 2005, 11(22): 8097-8104. [33] Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos[J]. J Pharmacol Exp Ther, 2001, 299(3): 825-831. |