[1] Fraser CS. The molecular basis of translational control[J]. Prog Mol Biol Transl Sci,2009,90:1-51. [2] Watkins SJ, Norbury CJ. Translation initiation and its deregulation during tumorigenesis[J]. Br J Cancer,2002,86(7):1023-1027. [3] Pestova TV, Kolupaeva VG. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection[J]. Genes Dev,2002,16(22):2906-2922. [4] Scheper GC, Proud CG, van der Knaap MS. Defective translation initiation causes vanishing of cerebral white matter[J]. Trends Mol Med, 2006,12(4):159-166. [5] Kline CL, Schrufer TL, Jefferson LS, et al. Glucosamine-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is mediated by the protein kinase R-like endoplasmic-reticulum associated kinase[J]. Int J Biochem Cell Biol, 2006,38(5/6):1004-1014. [6] Malina A, Cencic R, Pelletier J. Targeting translation dependence in cancer[J]. Oncotarget,2011,2(1/2):76-88. [7] Liu Z, Dong Z, Yang Z, et al. Role of eIF3a (eIF3 p170) in intestinal cell differentiation and its association with early development[J]. Differentiation, 2007,75(7):652-661. [8] Bitterman PB, Polunovsky VA. Translational control of cell fate: from integration of environmental signals to breaching anticancer defense[J]. Cell Cycle,2012,11(6):1097-1107. [9] Polunovsky VA, Bitterman PB. The cap-dependent translation apparatus integrates and amplifies cancer pathways[J]. RNA Biol,2006,3(1):10-17. [10] Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation[J]. Nat Rev Mol Cell Biol,2010,11(2):113-127. [11] Jackson RJ. Alternative mechanisms of initiating translation of mammalian mRNAs[J]. Biochem Soc Trans, 2005,33(Pt 6):1231-1241. [12] Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states[J]. Cell Cycle, 2011,10(2):229-240. [13] Palmiter RD. Quantitation of parameters that determine the rate of ovalbumin synthesis[J]. Cell,1975,4(3):189. [14] Kozak M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation[J]. Gene,2003,318:1-23. [15] Klinge S, Voigts-Hoffmann F, Leibundgut M, et al. Atomic structures of the eukaryotic ribosome[J]. Trends Biochem Sci, 2012,37(5):189-198. [16] Audic Y, Hartley RS. Post-transcriptional regulation in cancer[J]. Biol Cell, 2004,96(7):479-498. [17] Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation[J]. Prog Mol Biol Transl Sci,2009,90:53-107. [18] Van Der Kelen K, Beyaert R, Inze D, et al. Translational control of eukaryotic gene expression[J]. Crit Rev Biochem Mol Biol,2009,44(4):143-168. [19] Firczuk H, Kannambath S, Pahle J, et al. An in vivo control map for the eukaryotic mRNA translation machinery[J]. Mol Syst Biol,2013,9:635. [20] Asano K, Clayton J, Shalev A, et al. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo[J]. Genes Dev,2000,14(19):2534-2546. [21] Graff JR, Konicek BW, Carter JH, et al.Targeting the eukaryotic translation initiation factor 4E for cancer therapy[J]. Cancer Res,2008,68(3):631-634. [22] Konicek BW, Dumstorf CA, Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy[J]. Cell Cycle, 2008,7(16):2466-2471. [23] Mamane Y, Petroulakis E, Rong L, et al. eIF4E--from translation to transformation[J]. Oncogene, 2004,23(18):3172-3179. [24] Mamane Y, Petroulakis E, Rong L, et al. eIF4E--from translation to transformation[J]. Oncogene, 2004,23(18):3172-3179. [25] Fischer PM. Cap in hand: targeting eIF4E[J]. Cell Cycle,2009,8(16):2535-2541. [26] Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap[J]. Nature, 1990,345(6275):544-547. [27] Fukuchi-Shimogori T, Ishii I, Kashiwagi K, et al. Malignant transformation by overproduction of translation initiation factor eIF4G[J]. Cancer Res, 1997,57(22):5041-5044. [28] Coleman LJ, Peter MB, Teall TJ, et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity[J]. Br J Cancer, 2009,100(9):1393-1399. [29] Derry MC, Yanagiya A, Martineau Y, et al. Regulation of poly(A)-binding protein through PABP-interacting proteins[J]. Cold Spring Harb Symp Quant Biol, 2006,71:537-543. [30] Shuda M, Kondoh N, Tanaka K, et al. Enhanced expression of translation factor mRNAs in hepatocellular carcinoma[J]. Anticancer Res, 2000,20(4):2489-2494. [31] Lankat-Buttgereit B, Goke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation[J]. Biol Cell,2009,101(6):309-317. [32] Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism[J]. Adv Nutr,2012,3(3):307-321. [33] Sonenberg N, Dever TE. Eukaryotic translation initiation factors and regulators[J]. Curr Opin Struct Biol,2003,13(1):56-63. [34] Koromilas AE, Roy S, Barber GN, et al. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase[J]. Science,1992,257(5077):1685-1689. [35] Jagus R, Joshi B, Barber GN. PKR, apoptosis and cancer[J]. Int J Biochem Cell Biol, 1999,31(1):123-138. [36] Anderson P, Kedersha N. Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation[J]. Cell Stress Chaperones,2002,7(2):213-221. [37] Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control[J]. Biochem Soc Trans, 2006,34(Pt 1):7-11. [38] Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis[J]. Prog Mol Subcell Biol, 2001,27:57-89. [39] Dalton LE, Healey E, Irving J, et al. Phosphoproteins in stress-induced disease[J]. Prog Mol Biol Transl Sci, 2012,106:189-221. [40] Donze O, Jagus R, Koromilas AE, et al. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells[J]. EMBO J,1995,14(15):3828-3834. [41] Damoc E, Fraser CS, Zhou M, et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry[J]. Mol Cell Proteomics, 2007,6(7):1135-1146. [42] Valasek L, Mathew AA, Shin BS, et al. The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo[J]. Genes Dev,2003,17(6):786-799. [43] Hui DJ, Bhasker CR, Merrick WC, et al. Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi[J]. J Biol Chem,2003,278(41):39477-39482. [44] Martineau Y, Derry MC, Wang X, et al. Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation[J]. Mol Cell Biol,2008,28(21):6658-6667. [45] Park HS, Himmelbach A, Browning KS, et al. A plant viral "reinitiation" factor interacts with the host translational machinery[J]. Cell,2001,106(6):723-733. [46] Lagirand-Cantaloube J, Offner N, Csibi A, et al. The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy[J]. EMBO J,2008,27(8):1266-1276. [47] Lee JP, Brauweiler A, Rudolph M, et al. The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways[J]. Mol Cancer Res,2010,8(1):93-106. [48] Bolger TA, Folkmann AW, Tran EJ, et al. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation[J]. Cell,2008,134(4):624-633. [49] Harris TE, Chi A, Shabanowitz J, et al. mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin[J]. EMBO J,2006,25(8):1659-1668. [50] Choy L, Derynck R. The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response[J]. J Biol Chem, 1998,273(47):31455-31462. [51] Saletta F, Suryo Rahmanto Y, Richardson DR. The translational regulator eIF3a: the tricky eIF3 subunit![J] Biochim Biophys Acta, 2010,1806(2):275-286. [52] Dong Z, Liu Z, Cui P, et al. Role of eIF3a in regulating cell cycle progression[J]. Exp Cell Res, 2009,315(11):1889-1894. [53] Dong Z, Liu LH, Han B, et al. Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth[J]. Oncogene, 2004,23(21):3790-3801. [54] Yin JY, Shen J, Dong ZZ, et al. Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair[J]. Clin Cancer Res, 2011,17(13):4600-4609. [55] Yin JY, Dong ZZ, Liu RY, et al. Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a[J]. Carcinogenesis,2013. [Epub ahead of print] [56] Yin JY, Dong Z, Liu ZQ, et al. Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments[J]. Biosci Rep, 2011,31(1):1-15. [57] Zhang L, Pan X, Hershey JW. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells[J]. J Biol Chem,2007,282(8):5790-5800. [58] Shi J, Kahle A, Hershey JW, et al. Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells[J]. Oncogene,2006,25(35):4923-4936. [59] Shi J, Feng Y, Goulet AC, et al. The p34cdc2-related cyclin-dependent kinase 11 interacts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis[J]. J Biol Chem, 2003,278(7):5062-5071. [60] Shi J, Hershey JW, Nelson MA. Phosphorylation of the eukaryotic initiation factor 3f by cyclin-dependent kinase 11 during apoptosis[J]. FEBS Lett,2009,583(6):971-977. [61] Miyazaki S, Imatani A, Ballard L, et al. The chromosome location of the human homolog of the mouse mammary tumor-associated gene INT6 and its status in human breast carcinomas[J]. Genomics,1997,46(1):155-158. [62] Ahlemann M, Zeidler R, Lang S, et al. Carcinoma-associated eIF3i overexpression facilitates mTOR-dependent growth transformation[J]. Mol Carcinog,2006,45(12):957-967. [63] Kedersha N, Anderson P. Regulation of translation by stress granules and processing bodies[J]. Prog Mol Biol Transl Sci,2009,90:155-185. [64] Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size[J]. Prog Mol Biol Transl Sci,2009,90:109-153. [65] Ghosh A, Datta R, Majumdar A, et al. The N-terminal lysine residue-rich domain II and the 340-430 amino acid segment of eukaryotic initiation factor 2-associated glycoprotein p67 are the binding sites for the gamma-subunit of eIF2[J]. Exp Cell Res,2006,312(16):3184-3203. [66] Guan XY, Fung JM, Ma NF, et al. Oncogenic role of eIF-5A2 in the development of ovarian cancer[J]. Cancer Res,2004,64(12):4197-4200. [67] Anand N, Murthy S, Amann G, et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer[J]. Nat Genet,2002,31(3):301-305. |