[1] 王勇, 陈克平, 姚勤. bHLH转录因子家族研究进展[J].遗传, 2008, 30(7) : 821-830. [2] Conlon TM, Meyer KB. Cloning and functional characterization of avian transcription factor E2A [J]. BMC Immunol, 2004, 5: 11. [3] Hata K, Mizuguchi J. Genomic organization and characterization of the promoter for the E2A gene [J]. Gene, 2004, 325: 53-61. [4] Slattery C, McMorrow T, Ryan MP,et al. Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis [J]. FEBS Lett, 2006, 580(17): 4021-4030. [5] Zheng W, Wang H, Xue L, et al. Regulation of cellular senescence and p16 expression by Id1 and E47 proteins in the human diploid fibroblast [J]. J Biol Chem, 2004, 279(30): 31524-31532. [6] Chu G, Kohtz DZ. Identification of the E2A gene products as regulatory targets of the G1 cycling-dependent kinases [J]. JBC, 2001, 276(11): 8524-8534. [7] Rahmouni K, Sigmund CD. Id3, E47, and SREBP1C: fat factors controlling adiponectin [J]. Circ Res, 2008, 103(6): 565-567. [8] Landin AM, Frasca D, Harrison P, et al. E47 retroviral rescue of intrinsic B-cell defects in senescent mice [J]. Aging Cell,2011, 10(2): 327-337. [9] Lin YC, Jhunwala S, Benner C, et al. A global network of transcription factors, involvingE2A, EBF1 and Foxo1, that orchestrates B cell fate [J]. Nat Immunol, 2010, 11(7): 635-645. [10] Beck K, Peak MM, Ota T,et al. Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci [J]. J Exp Med,2009,206(10):2271-2284. [11] Sigvardsson M, O'Riordan M, Grosschedl R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes [J]. Immunity,1997,7(1):25-36. [12] Frasca D, Nguven D, Riley RL, et al. Effects of aging on DNA-binding activity of the E47 transcription factor in splenic B cells [J]. Mech Ageing Dev,2004,125(2):111-112. [13] Nenfeld B, Grosse-Wide A, Hoffmeyer A, et al. Serine/Threonine kinases 3pk and MAPK-activated protein kinase 2 Interact with the basic helix-loop-helix transcription factor E47 and repress its transcriptional activity [J]. J Biol Chem,2000,275(27):20239-20242. [14] Mrre C. Helix-loop-helix proteins and lymphocyte development [J]. Nat Immunol, 2005, 6: 1079-1086. [15] Chan AC, Berzins SP, Godfrey DI, et al. Transcriptional regulation of lymphocyte development. Developing NKT cells need their (E) protein. [J]. Immunol Cell Biol, 2010, 88(5): 507-509. [16] Dumonteil E, Laser B, Costant I, et al. Differential regulation of the glucagon and insulin I gene promoters by the basic helix-loop-helix transcription factors E47 and BETA2 [J]. J Biol Chem, 1998, 273(32): 19945-19954. [17] Amemiya-Kudo M, Oka J, Ide T, et al. Sterol regulatory element-binding proteins activate insulin gene promoter directly and indirectly through synergy with BETA2/E47 [J]. J Biol Chem,2005, 280(41):34577-34589. [18] Docherty HM, Hay CW, Ferguson LA, et al. Relative contribution of PDX-1, MafA and E47/β2 to the regulation of the human insulin promoter [J]. Biochem J, 2005, 389(3): 813-820. [19] Mirasierra M, Vallejo M. The homeoprotein Alx3 expressed in pancreatic β-cells re gene transcription by interacting with the basic helix-loop-helix protein E47 [J]. Mol Endocrinol, 2006, 20(11): 2876-2889. [20] Petropoulos H, Skerjanc IS. Analysis of the inhibition of MyoD activity by ITF-2B and full-length E12/E47 [J]. J Biol Chem,2000,275(33):25095-250101. [21] Liuis F, Ballestar E, Suelves M, et al. E47 phosphorylation by p38 MAKE promotes MyoD/E47 association and muscle-specific gene transcription [J]. EMBO J, 2005, 24(5): 974-984. [22] Becker JR, Dorman CM, McClafferty TM, et al. Characterization of a dominant inhibitory E47 protein that suppresses C2C12 myogenesis [J]. Exp Cell Res, 2001, 267(1):135-143. [23] Kumar MS. Smooth muscle alpha-actin gene requires two E-Boxes for proper expression in vivo and is a target of class I basic helix-loop-helix proteins [J]. Circ Res, 2003, 92(8): 840-847. [24] Tsen-Heng JI, Tan S. The role of class I HLH genes in neural development-have they been overlooked [J] ?Bioessays, 2003, 25(7): 709-716. [25] Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5): 871-890. [26] Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits [J]. Nat Rev Cancer, 2009, 9(4): 265-273. [27] Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression [J]. Curr Opin Cell Biol, 2005, 17(5): 548-558. [28] Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer [J]. Cancer Metastasis Rev, 2009, 28 (1/2): 151-166. [29] Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening [J]. Cell, 2009, 138(4): 645-659. [30] Hazan RB, Qiao R, Keren R, et al. Cadherin switch in tumor progression [J]. Ann NY Acad Sci, 2004, 1014: 155-163. [31] Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer [J]. Breast Cancer Res, 2010, 12(5): 68. [32] Damonte P, Gregg JP, Borowsky AD,et al. EMT tumorigenesis in the mouse mammary gland [J]. Lab Invest, 2007, 87(12): 1218-1226. [33] 王黎萍, 沈建明, 叶婷婷, 等. 羟苯磺酸钙对肾间质纤维化大鼠纤维连接蛋白表达的影响[J]. 医药导报, 2011, 30(11): 1414-1417. [34] Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions [J]. J Biol Chem, 2001, 276(29): 27424-27431. [35] Slattery C, Mcmorrow T, Ryan MP. Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis [J]. FEBS Lett, 2006, 580(17): 4021-4030. [36] Kondo M, Cubillo E, Tobiume K, et al. A role for Id in the regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation [J]. Cell Death Differ, 2004, 11(10): 1092-1101. |