[1] 陆惠华. 关注《中国高血压防治指南2010》的新进展、新理念[J]. 中国老年保健医学, 2011, 9(5): 5-6. [2] Kizhakekuttu TJ, Widlansky ME.Natural antioxidants and hypertension: promise and challenges [J]. Cardiovasc Ther, 2010, 28(4): e20-32. [3] Chen AF, Chen DD, Daiber A, et al. Free radical biology of the cardiovascular system[J]. Clin Sci (Lond), 2012, 123(2): 73-91. [4] Lassegue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature [J]. Arterioscler Thromb Vasc Biol, 2010, 30(4): 653-661. [5] Virdis A, Duranti E, Taddei S. Oxidative Stress and Vascular Damage in Hypertension: Role of Angiotensin II[J]. Int J Hypertens, 2011,2011:916310. [6] DuYH , GuanYY ,Alp NJ , et al. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension[J]. Circulation, 2008, 117(8): 1045-1054. [7] Xie HH, Zhou S, Chen DD, et al. GTP cyclohydrolase I/BH4 pathway protects EPCs via suppressing oxidative stress and thrombospondin-1 in salt-sensitivehypertension[J].Hypertension, 2010, 56(6): 1137-1144. [8] 陈艾东. 室旁核血管紧张素Ⅱ和内皮素-1调控心交感传入反射机制研究[C]. 2009, 南京医科大学. [9] Kang YM,Ma Y,Zheng JP, et al. Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension[J]. Cardiovasc Res, 2009, 82(3): 503-512. [10] Kishi T, Hirooka Y. Oxidative stress in the brain causes hypertension via sympathoexcitation [J]. Front Physiol, 2012, 3: 335. [11] Chaswal M, Das S,Prasad J, et al. Cardiac autonomic function in acutely nitric oxide deficient hypertensive rats: role of the sympathetic nervous system and oxidative stress[J].Can J Physiol Pharmacol, 2011,89(12):865-874. [12] Chan SH, Hsu KS, Huang CC, et al. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medula[J].Circ Res, 2005, 97(8): 772-780. [13] Kishi T, Hirooka Y, Konno S, et al. Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats[J]. Hypertension, 2010, 55(2): 291-297. [14] Chan SH, Wu KL, Chang AY, et al. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension[J].Hypertension, 2009, 53(2): 217-227. [15] Nishihara M, Hirooka Y, Matsukawa R, et al. Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats[J]. J Hypertens, 2012, 30(1): 97-106. [16] Wu KL, Chan SH, Chan JY. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation [J]. J Neuroinflammation, 2012, 9(1): 212. [17] de Castro UG, de Sousa GG, Machado Rdo P, et al. Nitric oxide at the CVLM is involved in the attenuation of the reflex bradycardia in renovascular hypertensive rats[J]. Nitric Oxide,2012, 26(2):118-125. [18] Capone C, Faraco G, Peterson JR, et al. Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension[J]. J Neurosci, 2012,32(14): 4878-4886. [19] Pechanova O, Jendekova L, Vrankova S. Effect of chronic apocynin treatment on nitric oxide and reactive oxygen species production in borderline and spontaneous hypertension[J]. Pharmacol Rep, 2009, 61(1):116-122. [20] Nakmareong S, Kukongviriyapan V, Kongyingyoes B,et al. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension[J].Naunyn Schmiedebergs Arch Pharmacol, 2011,383(5): 519-529. [21] Wind S, Beuerlein K, Armitage ME, et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition[J]. Hypertension, 2010, 56(3): 490-497. [22] Briones AM, Rodriguez-Criado N, Hernanz R, et al. Atorvastatin prevents angiotensin II-induced vascular remodeling and oxidative stress[J]. Hypertension, 2009, 54(1):142-149. [23] Oliveira-Sales EB, Nishi EE, Carillo BA, et al. Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension[J]. Am J Hypertens, 2009, 22(5): 484-492. [24] Shinohara K, Hirooka Y, Kishi T, et al. Reduction of nitric oxide-mediated gamma-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats[J]. Circ J, 2012,76(2):2814-2821. [25] Kishi T, Hirooka Y, Sunagawa K. Sympathoinhibition caused by orally administered telmisartan through inhibition of the AT(1) receptor in the rostral ventrolateral medulla of hypertensive rats[J]. Hypertens Res, 2012, 35(9): 940-946. [26] de Oliveira-Sales EB, Nishi EE, Boim MA, et al. Upregulation of AT1R and iNOS in the rostral ventrolateral medulla (RVLM) is essential for the sympathetic hyperactivity and hypertension in the 2K-1C Wistar rat model[J]. Am J Hypertens, 2010, 23(7):708-715. [27] Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function[J].PLoS One,2011,6(7): e22682. [28] Ogawa K, Hirooka Y, Shinohara K, et al. Inhibition of oxidative stress in rostral ventrolateral medulla improves impaired baroreflex sensitivity in stroke-prone spontaneously hypertensive rats[J].Int Heart J, 2012, 53(3): 193-198. |