中国临床药理学与治疗学 ›› 2014, Vol. 19 ›› Issue (11): 1288-1293.
秦雯, 张艳, 汪萌芽
收稿日期:
2014-04-02
修回日期:
2014-08-19
出版日期:
2014-11-26
发布日期:
2014-12-09
通讯作者:
汪萌芽,男,教授,博士,硕士生导师,研究方向:细胞电生理学。Tel: 0553-3932276 E-mail: wangmy@wnmc.edu.cn
作者简介:
秦雯,女,硕士研究生,研究方向:神经细胞电生理学和药理学。 Tel: 18297532760 E-mail: vicky_870708@126.com
基金资助:
QIN Wen, ZHANG Yan, WANG Meng-ya
Received:
2014-04-02
Revised:
2014-08-19
Online:
2014-11-26
Published:
2014-12-09
摘要: 突触可塑性是用来描述突触传递效能的一种活动依赖性变化,其长时程改变可分为长时程增强(LTP)和长时程抑制(LTD)。再可塑性是突触可塑性的一种高阶形式,即通过前呈刺激活动依赖性调节LTP或LTD的诱导或表达。关于脊髓突触可塑性及其在脊髓损伤中的作用,国内外已有较多研究报道,近年来脊髓突触再可塑性的机制研究及其对脊髓损伤恢复的影响逐渐成为热点。本文主要对突触再可塑性及其在脊髓损伤恢复中的作用研究进行综述。
中图分类号:
秦雯, 张艳, 汪萌芽. 突触再可塑性在脊髓损伤恢复中的作用[J]. 中国临床药理学与治疗学, 2014, 19(11): 1288-1293.
QIN Wen, ZHANG Yan, WANG Meng-ya. Roles of synaptic metaplasticity in the recovery after spinal cord injury[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(11): 1288-1293.
[1] | Lynskey JV, Belanger A, Jung R.Activity-dependent plasticity in spinal cord injury[J]. J Rehabil Res Dev, 2008, 45(2): 229-240. |
[2] | Bliss TV, Lomo T.Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J]. J Physiol, 1973, 232(2):331-356. |
[3] | Izquierdo I, Cammarota M, Da Silva WC, et al.The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks[J]. An Acad Bras Ciênc, 2008, 80(1):115-127. |
[4] | Ikeda H, Kiritoshi T, Murase K.Synaptic plasticity in the spinal dorsal horn[J]. Neurosci Res, 2009, 64(2):133-136. |
[5] | Kniffki KD, Schomburg ED, Steffens H.Synaptic effects from chemically activated fine muscle afferents upon alpha-motoneurones in decerebrate and spinal cats[J]. Brain Res, 1981, 206(2):361-370. |
[6] | Wolpaw JR, Tennissen AM.Activity-dependent spinal cord plasticity in health and disease[J]. Annu Rev Neurosci, 2001, 24:807-843. |
[7] | 江潇, 汪萌芽. 对侧腹外侧索强直刺激在脊髓运动神经元诱发的长时程增强[J]. 皖南医学院学报, 2008, 27(6): 391-394, 398. |
[8] | Briggman KL, Kristan WB.Multifunctional pattern-generating circuits[J]. Annu Rev Neurosci, 2008, 31: 271-294. |
[9] | Rossignol S, Frigon A, Barrière G, et al.Spinal plasticity in the recovery of locomotion[J]. Prog Brain Res, 2011, 188: 229-241. |
[10] | Joynes RL, Grau JW.Mechanisms of Pavolovian conditioning: role of protection from habituation in spinal conditioning[J]. Behav Neurosci, 1996, 110(6):1375-1387. |
[11] | Grau JW, Barstow DG, Joynes RL.Instrumental learning within the spinal cord: I. Behavioral properties[J]. Behav Neurosci, 1998, 112(6): 1366-1386. |
[12] | Wolpaw JR.Spianl cord plasticity in acquisition and maintenance of motor skills[J]. Acta Physiol(Oxf), 2007, 189(2): 155-169. |
[13] | Barriere G, Leblond H, Provencher J, et al.Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries[J]. J Neurosci, 2008, 28(15): 3976-3987. |
[14] | Abraham WC.Metaplasticity: turning synapses and networks for plasticity[J]. Nat Rev Neurosci, 2008, 9(5):387. |
[15] | Grau JW, Crown ED, Ferguson AR, et al.Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury[J]. Behav Cogn Neurosci Rev, 2006, 5(4): 191-239. |
[16] | Bartlett TE, Bannister NJ, Collett VJ, et al.Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-Week old rat hippocampus[J]. Neuropharmacology, 2007, 52(1): 60-70. |
[17] | Moser EI, Krobert KA, Moser MB, et al.Impaired spatial learning after saturation of long-term potentiation[J]. Science, 1998, 281(5385): 2038-2042. |
[18] | Zorumski CF, Izumi Y.NMDA receptors and metaplasticity: Mechanisms and possible roles in neuropsychiatric disorders[J]. Neurosci Biobehav Rev, 2012, 36(3): 989-1000. |
[19] | Oh MC, Derkach VA, Guire ES, et al.Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation[J]. J Biol Chem, 2006, 281(2): 752-758. |
[20] | Tenorio G, Connor SA, Guévremont D, et al.'Silent' priming of translation-dependent LTP by β-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors[J]. Learn Mem, 2010, 17(12): 627-638. |
[21] | Ren SQ, Yan JZ, Zhang XY, et al.PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP[J]. EMBO J, 2013, 32(10): 1365-1380. |
[22] | Ugolini A, Corsi M, Bordi F.Potentiation of NMDA and AMPA responses by group I mGluR in spinal cord motoneurons[J]. Neuropharmacology, 1997, 36(8): 1047-1055. |
[23] | Guo W, Wei F, Zou S, et al.Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate s pinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia[J]. J Neurosci, 2004, 24(41): 9161-9173. |
[24] | Castro-Lopes JM, Malcangio M, Pan BH, et al.Complex changes of GABAA and GABAB receptor binding in the spinal cord dorsal horn following peripheral inflammation or neurectomy[J]. Brain Res, 1995, 679(2): 289-297. |
[25] | Miletic G, Miletic V.Contribution of GABA-A receptors to metaplasticity in the spinal dorsal horn[J]. Pain, 2001, 90(1/2): 157-162. |
[26] | Kvarta MD, Harris-Warrick RM, Johnson BR.Neuronmodulator-evoked synaptic metaplasticity within a central pattern generator network[J]. J Neurophysiol, 2012, 108(10): 2846-2856. |
[27] | Parker D, Grillner S.Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network[J]. J Neurosci, 1999, 19(5): 1647-1656. |
[28] | Parker D.Spinal-Cord plasticity: independent and interactive effects of neuromodulator and activity-dependent plasticity[J]. Mol Neurobiol, 2000, 22(1/2/3): 55-80. |
[29] | Bevan S, Parker D.Metaplastic facilitation and ultrastructural changes in synaptic properties are associated with long-term modulation of the lamprey locomotor network[J]. J Neurosci, 2004, 24(42): 9458-9468. |
[30] | Coba MP, Pocklington AJ, Collins MO, et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks[J]. Sci Signal, 2009, 2(68): ral 19. |
[31] | Young JZ, Isiegas C, Abel T, et al.Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging[J]. Eur J Neurosci, 2006, 23(7): 1784-1794. |
[32] | Sweatt JD.Mitogen-activated protein kinases in synaptic plasticity and memory[J]. Curr Opin Neurobiol, 2004, 14(3): 311-317. |
[33] | Anwyl R.Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression[J]. Prog Neurobiol, 2006, 78(1):17-37. |
[34] | Zhu Y, Pak D, Qin Y, et al.Rap-2-JNK removes synaptic AMPA receptors during depotentiation[J]. Neuron, 2005, 46(6): 905-916. |
[35] | Flynn JR, Dunn LR, Galea MP, et al.Exercise training after spinal cord injury selectively alters synaptic properties in neurons in adult mouse spinal cord[J]. J Neurotrauma, 2013, 30(10): 891-896. |
[36] | Grau JW, Crown ED, Ferguson AR, et al.Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury[J]. Behav Cogn Neurosci Rev, 2006, 5(4): 191-239. |
[37] | Baumbauer KM, Hoy KC Jr, Huie JR, et al.Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning[J]. Neuroscience, 2008, 155(4): 1030-1047. |
[38] | Grau JW, Washbum SN, Hook MA, et al.Uncontrollable stimulation undermines recovery after spinal cord injury[J]. J Neurotrauma, 2004, 21(12): 1795-1817. |
[39] | Gwak YS, Hulsebosch CE.GABA and central neuropathic pain following spinal cord injury[J]. Neuropharmacology, 2011, 60(5): 799-808. |
[40] | Martinez M, Delivet-Mongrain H, Leblond H, et al.Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry[J]. J Neurophysiol, 2011, 106(4): 1969-1984. |
[41] | Acevedo JM, Díaz-Ríos M.Removing sensory input disrupts spinal locomotor activity in the early postnatal period[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2013, 199(12): 1105-1116. |
[42] | Martinez M, Rossignol S.A dual spinal cord lesion paradigm to study spinal locomotor plasticity in the cat[J]. Ann N Y Acad Sci, 2013, 1279: 127-134. |
[43] | Ma L, Shen YQ, Khatri HP, et al.The asparaginyl endopeptidase legumain is essential for functional recovery after spinal cord injury in adult zebrafish[J]. PLoS One,2014, 9(4): e95098. |
[44] | Pan HC, Lin JF, Ma LP, et al.Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish[J]. Eur J Neurosci, 2013, 37(2): 203-211. |
[45] | Gwak YS, Hulsebosch CE.GABA and central neuropathic pain following spinal cord injury[J]. Neuropharmacology, 2011, 60(5): 799-808. |
[46] | Ferguson AR, Bolding KA, Huie JR, et al.Group I metabotropic glutamate receptors control metaplasticity of spinal cord learning through a protein kinase C-dependent mechanism[J]. J Neurosci, 2008, 28(46):11939-11949. |
[47] | Gwak YS, Kang J, Unabia GC, et al.Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats[J]. Exp Neurol, 2012, 234(2): 362-372. |
[48] | Carlton SM, Du J, Tan HY, et al.Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury[J]. Pain, 2009, 147(1/2/3): 265-276. |
[49] | Gwak YS, Hulsebosch CE.Remote astrocytic and microglial activation modulates neuronal hyperexcitability and below-level neuropathic pain after spinal injury in rat[J]. Neuroscience, 2009, 161(3): 895-903. |
[50] | Huie JR, Baumbauer KM, Lee KH, et al.Glial tumor necrosis factor alpha (TNFα) generates metaplastic inhibition of spinal learning[J]. PLoS One, 2012, 7(6): e39751. |
[51] | Harkema S, Gerasimenko Y, Hodes J, et al.Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study[J]. Lancet, 2011, 377(9781): 1938-1947. |
[52] | Zhang HM, Zhang H, Dougherty PM.Dynamic effects of TNF-α on synaptic transmission in mice over time following sciatic nerve chronic constriction injury[J]. J Neurophysiol, 2013, 110(7):1663-1671. |
[53] | Zhou LJ, Zhong Y, Ren WJ, et al.BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn[J]. Exp Neurol, 2008, 212(2): 507-514. |
[54] | Huie JR, Garraway SM, Baumbauer KM, et al.Brain-derived neurotrophic factor promotes adaptive plasticity within the spinal cord and mediates the beneficial effects of controllable stimulation[J]. Neuroscience, 2012, 200: 74-90. |
[55] | Bramham CR, Messaoudi E.BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis[J]. Prog Neurobiol, 2005, 76(2): 99-125. |
[56] | Park BN, Kim SW, Cho SR, et al.Epigenetic regulation in the brain after spinal cord injury: a comparative study[J]. J Korean Neurosurg Soc, 2013, 53(6): 337-341. |
[57] | Huang J, Zhang Y, Lu L, et al.Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats[J]. Eur J Neurosci, 2013, 38(12):3691-3701. |
[1] | 蒋伟宇, 胡旭栋, 陈云琳, 阮超越, 许楠健, 王扬, 徐顶立, 张佳铭, 李豪杰, 马维虎. 白藜芦醇抑制脊髓损伤兔的NLRP3炎症小体活化[J]. 中国临床药理学与治疗学, 2020, 25(8): 850-856. |
[2] | 潘娅岚,苑文超,马 勇,郭 杨,郑苏阳,徐桂华,刘家欢. 脊髓康对大鼠脊髓损伤区小胶质细胞/神经元的影响[J]. 中国临床药理学与治疗学, 2020, 25(2): 151-158. |
[3] | 鲁玉宝,陈昱橦,何格格,蔡宗晏,程 岳,程子花,郭佳敏,郭艳芝. 中药提取物在脊髓损伤修复中的研究进展[J]. 中国临床药理学与治疗学, 2019, 24(9): 1075-1080. |
[4] | 刘亚东,卢小伟,刘志刚. 促红细胞生成素对急性脊髓损伤患者血清降钙素基因相关肽的影响[J]. 中国临床药理学与治疗学, 2019, 24(8): 933-937. |
[5] | 张 朋,陈勇忠,王金星,张金锋,翁超群,叶忠兴. 盐酸氨溴索联合大剂量甲基强的松龙冲击治疗促进胸腰椎骨折合并脊髓损伤术后神经功能恢复作用的初步探讨[J]. 中国临床药理学与治疗学, 2017, 22(8): 937-942. |
[6] | 顾兵, 王烁宇, 李华南, 王俊, 张水印. 促红细胞生成素早期治疗大鼠脊髓挫伤的形态学研究[J]. 中国临床药理学与治疗学, 2013, 18(2): 147-155. |
[7] | 顾兵, 金建波, 李华南, 王烁宇. 大鼠创伤性脊髓损伤模型的建立[J]. 中国临床药理学与治疗学, 2011, 16(7): 721-728. |
[8] | 周红英, 侯群, 戚观树, 裘昌林. 马钱子抑制兔脊髓损伤的细胞凋亡作用[J]. 中国临床药理学与治疗学, 2010, 15(8): 880-885. |
[9] | 杨迎暴, 朴英杰. 白藜芦醇对急性脊髓损伤早期脂质过氧化反应和活性氧水平的抑制作用[J]. 中国临床药理学与治疗学, 2002, 7(3): 193-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||