[1] Evans WE,McLeod HL. Pharmacogenomics--drug disposition, drug targets, and side effects[J]. N Engl J Med, 2003, 348(6): 538-549. [2] Ansari A, Arenas M, Greenfield SM, et al. Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2008, 28(8): 973-983. [3] Takatsu N, Matsui T, Murakami Y, et al. Adverse reactions to azathioprine cannot be predicted by thiopurine S-methyltransferase genotype in Japanese patients with inflammatory bowel disease[J]. J Gastroenterol Hepatol, 2009, 24(7): 1258-1264. [4] Chen D, Lian F, Yuan S, et al. Association of thiopurine methyltransferase status with azathioprine side effects in Chinese patients with systemic lupus erythematosus[J]. Clin Rheumatol, 2014, 33(4): 499-503. [5] Hindorf U, Lindqvist M, Hildebrand H, et al. Adverse events leading to modification of therapy in a large cohort of patients with inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2006, 24(2): 331-342. [6] Osterman MT, Kundu R, Lichtenstein GR, et al. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis[J]. Gastroenterology, 2006, 130(4): 1047-1053. [7] 夏泉, 黄燕,汪燕燕, 等. 巯嘌呤甲基转移酶基因多态性联合硫鸟嘌呤核苷酸血药浓度监测在硫唑嘌呤治疗炎症性肠病治疗中的临床应用[J]. 中国临床药理学与治疗学,2014,19(3): 302-308. [8] Sumi S, Marinaki AM, Arenas M, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency[J]. Hum Genet, 2002, 111(4/5): 360-367. [9] Behmanesh M, Sakumi K, Abolhassani N, et al. ITPase-deficient mice show growth retardation and die before weaning[J]. Cell Death Differ, 2009, 16(10): 1315-1322. [10] Shipkova M, Lorenz K, Oellerich M, et al. Measurement of erythrocyte inosine triphosphate pyrophosphohydrolase (ITPA) activity by HPLC and correlation of ITPA genotype-phenotype in a Caucasian population[J]. Clin Chem, 2006, 52(2): 240-247. [11] von Ahsen N, Oellerich M and Armstrong VW. Characterization of the inosine triphosphatase (ITPA) gene: haplotype structure, haplotype-phenotype correlation and promoter function[J]. Ther Drug Monit, 2008, 30(1): 16-22. [12] Kudo M, Saito Y, Sasaki T, et al. Genetic variations in the HGPRT, ITPA, IMPDH1, IMPDH2, and GMPS genes in Japanese individuals[J]. Drug Metab Pharmacokinet, 2009, 24(6): 557-564. [13] Marsh S, King CR, Ahluwalia R, et al. Distribution of ITPA P32T alleles in multiple world populations[J]. J Hum Genet, 2004, 49(10): 579-581. [14] Marsh S,Van Booven DJ. The increasing complexity of mercaptopurine pharmacogenomics[J]. Clin Pharmacol Ther, 2009, 85(2): 139-141. [15] Melaouhia S, Fekih M, Garat A, et al. Allele frequency of inosine triphosphate pyrophosphatase (ITPA) and thiopurine-S-methyl transferase (TPMT) genes in the Tunisian population[J]. Clin Res Hepatol Gastroenterol, 2012, 36(2): 178-184. [16] Cheon JH, Kim JH, Kim BY, et al. Allele frequency of thiopurine methyltransferase and inosine triphosphate pyrophosphatase gene polymorphisms in Korean patients with inflammatory bowel diseases[J]. Hepatogastroenterology, 2009, 56(90): 421-423. [17] Okada Y, Nakamura K, Hiromura K, et al. Pro32Thr polymorphism of inosine triphosphate pyrophosphatase gene predicts efficacy of low-dose azathioprine for patients with systemic lupus erythematosus[J]. Clin Pharmacol Ther, 2009, 85(5): 527-530. [18] Uchiyama K, Nakamura M, Kubota T, et al. Thiopurine S-methyltransferase and inosine triphosphate pyrophosphohydrolase genes in Japanese patients with inflammatory bowel disease in whom adverse drug reactions were induced by azathioprine/6-mercaptopurine treatment[J]. J Gastroenterol, 2009, 44(3): 197-203. [19] Schwab M, Schaffeler E, Marx C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism[J]. Pharmacogenetics, 2002, 12(6): 429-436. [20] Marinaki AM, Ansari A, Duley JA, et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase)[J]. Pharmacogenetics, 2004, 14(3): 181-187. [21] Adam de Beaumais T, Fakhoury M, Medard Y, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy[J]. Br J Clin Pharmacol, 2011, 71(4): 575-584. [22] Wan Rosalina WR, Teh LK, Mohamad N, et al. Polymorphism of ITPA 94C>A and risk of adverse effects among patients with acute lymphoblastic leukaemia treated with 6-mercaptopurine[J]. J Clin Pharm Ther, 2012, 37(2): 237-241. [23] Zelinkova Z, Derijks LJ, Stokkers PC, et al. Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression[J]. Clin Gastroenterol Hepatol, 2006, 4(1): 44-49. [24] Shipkova M, Franz J, Abe M, et al. Association between adverse effects under azathioprine therapy and inosine triphosphate pyrophosphatase activity in patients with chronic inflammatory bowel disease[J]. Ther Drug Monit, 2011, 33(3): 321-328. [25] Kim JH, Cheon JH, Hong SS, et al. Influences of thiopurine methyltransferase genotype and activity on thiopurine-induced leukopenia in Korean patients with inflammatory bowel disease: a retrospective cohort study[J]. J Clin Gastroenterol, 2010, 44(10): e242-248. [26] Zabala-Fernandez W, Barreiro-de Acosta M, Echarri A, et al. A pharmacogenetics study of TPMT and ITPA genes detects a relationship with side effects and clinical response in patients with inflammatory bowel disease receiving Azathioprine[J]. J Gastrointestin Liver Dis, 2011, 20(3): 247-253. [27] von Ahsen N, Armstrong VW, Behrens C, et al. Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study[J]. Clin Chem, 2005, 51(12): 2282-2288. [28] Van Dieren JM, Hansen BE, Kuipers EJ, et al. Meta-analysis: Inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2007, 26(5): 643-652. [29] Jung YS, Cheon JH, Park JJ, et al. Correlation of genotypes for thiopurine methyltransferase and inosine triphosphate pyrophosphatase with long-term clinical outcomes in Korean patients with inflammatory bowel diseases during treatment with thiopurine drugs[J]. J Hum Genet, 2010, 55(2): 121-123. [30] Kim H, Kang HJ, Kim HJ, et al. Pharmacogenetic analysis of pediatric patients with acute lymphoblastic leukemia: a possible association between survival rate and ITPA polymorphism[J]. PLoS One, 2012, 7(9): e45558. [31] Tanaka Y, Kurosaki M, Nishida N, et al. Genome-wide association study identified ITPA/DDRGK1 variants reflecting thrombocytopenia in pegylated interferon and ribavirin therapy for chronic hepatitis C[J]. Hum Mol Genet, 2011, 20(17): 3507-3516. [32] Motomura T, Koga E, Taketomi A, et al. Efficacy of splenectomy in preventing anemia in patients with recurrent hepatitis C following liver transplantation is not dependent on inosine triphosphate pyrophosphatase genotype[J]. Hepatol Res, 2012, 42(3): 288-295. |