[1]Greenleaf JE. Mechanisms for negative water balance during weightlessness: immersion or bed rest[J]? Physiologist, 1985, 28:S38-39.
[2]Pestov ID, Pokrovsky AV. Controlled water immersion as a model of weightlessness[J]. Physiologist, 1987, 30(1 Suppl): S125-128.
[3]Watenpaugh DE. Analogs of microgravity: head-down tilt and water immersion[J]. J Appl Physiol, 2016, 120(8): 904-914.
[4]Pitts GC, Bull LS, Oyama J. Effect of chronic centrifugation on body composition in the rat[J]. Am J Physiol, 1972, 223(5): 1044-1048.
[5]Bedford TG, Tipton CM. Lower body negative pressure in the tranquilized rat[J]. Aviat Space Environ Med, 1985, 56(8): 786-790.
[6]Witzmann FA, Kim DH, Fitts RH. Hindlimb immobilization: length-tension and contractile properties of skeletal muscle[J]. J Appl Physiol Respir Environ Exerc Physiol, 1982, 53(2): 335-345.
[7]Musacchia XJ, Deavers DR, Meininger GA, et al. A model for hypokinesia: effects on muscle atrophy in the rat[J]. J Appl Physiol Respir Environ Exerc Physiol, 1980, 48(3): 479-486.
[8]Wronski TJ, Morey-Holton ER. Skeletal response to simulated weightlessness: a comparison of suspension techniques[J]. Aviat Space Environ Med, 1987, 58(1): 63-68.
[9]Feldman S, Brunner LJ. Small animal model of weightlessness for pharmacokinetic evaluation[J]. J Clin Pharmacol, 1994, 34(6): 677-683.
[10]Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects[J]. J Appl Physiol, 2002, 92(4): 1367-1377.
[11]Morey ER, Sabelman EE, Turner RT, et al. A new rat model simulating some aspects of space flight[J]. Physiologist, 1979, 22(6) : S23-24 .
[12]Sun LW, Blottner D, Luan HQ, et al. Bone and muscle structure and quality preserved by active versus passive muscle exercise on a new stepper device in 21 days tail-suspended rats[J]. J Musculoskelet Neuronal Interact, 2013, 13(2): 166-177.
[13]Yu B, Yu D, Cao L, et al. Simulated microgravity using a rotary cell culture system promotes chondrogenesis of human adipose-derived mesenchymal stem cells via the p38 MAPK pathway[J]. Biochem Biophys Res Commun, 2011, 414(2): 412-418.
[14]Cintron NM,Lane HW,Leach CS. Metabolic consequences of fluid shifts induced by microgravity[J]. Physiologist, 1990, 33(1 Suppl):S16-19.
[15]Gandia P, Bareille MP, Saivin S, et al. Influence of simulated weightlessness on the oral pharmacokinetics of acetaminophen as a gastric emptying probe in man: a plasma and a saliva study[J]. J Clin Pharmacol, 2003, 43(11): 1235-1243.
[16]Idkaidek N, Arafat T. Effect of microgravity on the pharmacokinetics of ibuprofen in humans[J]. J Clin Pharmacol, 2011, 51(12): 1685-1689.
[17]陈英,杨春敏,韩全利,等. 模拟失重对大鼠血浆 ghrelin, VIP 和胃肠动力的影响[J]. 胃肠病学和肝病学杂志,2012,21(1): 55-58.
[18]Ying C, Chunmin Y, Qingsen L, et al. Effects of simulated weightlessness on tight junction protein occludin and Zonula Occluden-1 expression levels in the intestinal mucosa of rats[J]. J Huazhong Univ Sci Technolog Med Sci, 2011, 31(1): 26-32.
[19]Chen Y, Yang C, Mao G, et al. Effects of simulated weightlessness on the intestinal mucosal barrier of rats[J]. Advances in Space Res, 2011, 48(2): 395-402.
[20]Vaquer S, Cuyàs E, Rabadán A, et al. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model[J]. F1000 Res, 2014, 3:201.
[21]郭志峰,高建义,王宝珍,等. 头低位(-20°) 限制活动7d对兔庆大霉素药代动力学的影响[J].航天医学与医学工程,1999,12(5) :333-337.
[22]Chowdhury P,Soulsby ME,Pasley JN.Distribution of 3H-nicotine in rat tissues under the influence of simulated microgravity[J].Biomed Environ Sci,1999,12(2) :103-109.
[23]Schuck EL, Grant M, Derendorf H. Effect of simulated microgravity on the disposition and tissue penetration of ciprofloxacin in healthy volunteers[J].J Clin Pharmacol, 2005, 45(7) : 822-831.
[24]Brunner LJ, DiPiro JT, Feldman S. Antipyrine pharmacokinetics in the tail-suspended rat model[J]. J Pharmacol Exp Ther, 1995, 274(1): 345-352.
[25]Pavy-Le Traon A, Guell A, Saivin S, et al. The use of medicaments in space--therapeutic measures and potential impact of pharmacokinetics due to weightlessness[J]. ESA J, 1993, 18(1): 33-50.
[26]Saivin S, Traon A, Cornac A, et al. Impact of a four-day head-down tilt (-6 degrees) on lidocaine pharmacokinetics used as probe toevaluate hepatic blood flow[J]. J Clin Pharmacol, 1995, 35(7): 697-704.
[27]Brunner LJ, DiPiro JT, Feldman S. Antipyrine pharmacokinetics in the tail-suspended rat model[J]. J Pharmacol Exp Ther, 1995, 274(1): 345-352.
[28]Merrill AH, Wang E, Jones DP, et al. Hepatic function in rats after spaceflight: effects on lipids, glycogen, and enzymes[J]. Am J Physiol, 1987, 252(2): R222-R226.
[29]Merrill AH, Hoel M, Wang E, et al. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887[J]. FASEB J, 1990, 4(1): 95-100.
[30]Moskaleva N, Moysa A, Novikova S, et al. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver[J]. PloS one, 2015, 10(11): e0142374.
[31]Wei B, Abobo CV, Ma J, et al. Gender differences in pharmacokinetics of antipyrine in a simulated weightlessness rat model[J]. Aviat Space Environ Med, 2012, 83(1): 8-13.
[32]Nicogossian AE. Overall physiological response to space flight[J]. Space Physiology and Medicine, 1989: 139-153.
[33]梁力. 基于生理药动学模型的异丙嗪在模拟失重大鼠体内的处置研究[D]. 第四军医大学,2015.
[34]刘彦卿,洪燕君,曾苏.代谢性药物-药物相互作用的研究进展[J]. 浙江大学学报(医学版), 2009, 38(2): 215-224.
[35]张艳,郝海平,王广基.尿苷二磷酸葡萄糖醛酸转移酶介导的药物相互作用的研究进展[J]. 中国临床药理学与治疗学, 2011, 16(4): 447-454. |