[1]Heinrich AK, Lucas H, Schindler L, et al. Improved tumor specific drug accumulation by polymer therapeutics with pH-sensitive drug release overcomes chemotherapy resistance[J]. Mol Cancer Ther, 2016, 15(5): 998-1007.
[2]Navai SA, Ahmed N. Targeting the tumour profile using broad spectrum chimaeric antigen receptor T-cells [J]. Biochem Soc Trans, 2016, 44(2): 391-396.
[3]Ruttala HB, Ko YT. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy [J]. Pharm Res, 2014, 32(3):1002-1016.
[4]Loureiro A, Azoia NG, Gomes AC, et al. Albumin-based nanodevices as drug carriers [J]. Curr Pharm Des, 2016, 22(10): 1371-1390.
[5]Lohcharoenkal W, Wang L, Chen YC, et al. Protein nanoparticles as drug delivery carriers for cancer therapy [J]. Biomed Res Int, 2014, 2014(1):180549.
[6]Battogtokh G, Kang JH, Ko YT. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug [J]. Eur J Pharm Biopharm, 2015, 96: 96-105.
[7]Jacobs SA, Gibbs AC, Conk M, et al. Fusion to a highly stable consensus albumin binding domain allows for tunable pharmacokinetics[J]. Protein Eng Des Sel, 2015, 28(10):385-395.
[8]Kinoshita R, Ishima Y, Ikeda M, et al. S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes [J]. J Controlled Release, 2015, 217:1-9.
[9]Reddic RL, Zhang SH, Maeda N, et al. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression [J]. Arterioscler Thromb, 1994, 14(1):141-147.
[10]Mocan L, Matea C, Tabaran FA, et al. Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor [J]. Int J Nanomedicine, 2015, 2015(10): 5435-5445.
[11]Botos E, Klumperman J, Oorschot V, et al. Caveolin-1 is transported to multi-vesicular bodies after albumin-induced endocytosis of caveolae in HepG2 cells [J]. J Cell Med, 2008, 12(5a): 1632-1639.
[12]Hoang B, Ernsting MJ, Roy A, et al. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism [J]. Biomaterials, 2015, 59: 66-76.
[13]Yin T, Cai H, Liu J, et al. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel [J]. Eur J Pharm Sci, 2015, 83: 79-87.
[14]柳莹, 武鑫, 刘皋林,等. 适配体修饰的纳米粒在肿瘤诊断与治疗中的应用[J]. 中国临床药理学与治疗学, 2016, 21(3): 341-346.
[15]Dingjan T, Spendlove I, Durrant LG, et al. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies [J]. Mol Immunol, 2015, 67(2 Pt A): 75-88.
[16]Guo Z, He B, Jin H, et al. Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering [J]. Biomaterials, 2014, 35(23): 6106-6017.
[17]Fiorini C, Cordani M, Padroni C, et al. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine [J]. Biochim Biophys Acta, 2015, 1853(1): 89-100.
[18]Ji S, Xu J, Zhang B, et al . RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy [J]. Cancer Biol Ther, 2012, 13(4): 206-215.
[19]Ming X, Carver K, Wu L. Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides [J]. Biomaterials, 2013, 34(32): 7939-7949.
[20]Bhunia SK, Maity AR, Nandi S, et al. Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid [J]. Chembiochem, 2016, 17(7): 614-619.
[21]Shen Z, Li Y, Kohama K, et al. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres [J]. Pharmacol Res, 2011, 63(1): 51-58.
[22]Qi L, Guo Y, Luan J, et al. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system [J]. J Mater Chem B, 2014, 2(47): 8361-8371.
[23]Feng L, Wang W, Yao HP, et al. Human tumor xenografts in mouse as a model for evaluating therapeutic efficacy of monoclonal antibodies or antibody-drug conjugate targeting receptor tyrosine kinases [J]. Methods Mol Biol, 2015, 1233: 151-159.
[24]Fadaeian G, Shojaosadati SA, Kouchakzadeh H, et al. Targeted delivery of 5-fluorouracil with monoclonal antibody modified bovine serum albumin nanoparticles [J]. Iran J Pharm Res, 2015, 14(2): 395-405.
[25]Hapuarachchige S, Zhu W, Kato Y, et al. Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics [J]. Biomaterials, 2014, 35(7):2346-2354.
[26]Li W, Yi X, Liu X, et al. Hyaluronic acid ion pairing nanoparticles for targeted tumor therapy [J]. J Control Release, 2016, 225: 170-182.
[27]Zhong Y, Zhang J, Cheng R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts [J]. J Control Release, 2015, 205:144-154.
[28]Pulakkat S, Balaji SA, Rangarajan A, et al. Surface engineered protein nanoparticles with hyaluronic acid based multilayers for targeted delivery of anticancer agents [J]. ACS Appl Mater Interfaces, 2016, 8(36): 23437-23449.
[29]方奕巍, 尹宗宁. 透明质酸修饰的白蛋白纳米粒的制备及抗肿瘤作用的初步评价[J]. 四川大学学报医学版, 2011, 42(4): 480-484.
[30]Kolhatkar R, Lote A, Khambati H. Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors [J]. Curr Drug Discov Technol, 2011, 8(3): 197-206.
[31]Wang X, Huang X, Yang Z, et al. Targeted delivery of tumor suppressor microrna-1 by transferrin- conjugated lipopolyplex nanoparticles to patient-derived glioblastoma stem cells [J]. Curr Pharm Biotechnol, 2014, 15(9): 839-846.
[32]Bae S, Ma K, Kim TH, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types [J]. Biomaterials, 2012, 33(5): 1536-1546.
[33]Yan G, Wang J, Hu L, et al. Stepwise targeted drug delivery to liver cancer cells for enhanced therapeutic efficacy by galactose-grafted, ultra-pH-sensitive micelles [J]. Acta Biomater, 2017, pii: S1742-7061(17)30031-4.
[34]Mehdizadeh M, Rouhani H, Sepehri N, et al. Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy [J]. Artif Cells Nanomed Biotechnol, 2016, 45(3): 1-10.
[35]Taheri A, Dinarvand R, Nouri FS, et al. Use of biotin targeted methotrexate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy [J]. Int J Nanomedicine, 2011, 6(6): 1863-1874.
[36]Kesharwani P, Jain A, Jain A, et al. Cationic bovine serum albumin (CBA) conjugated poly lactic-co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumor [J]. Rsc Adv, 2016, 6(92): 89040-89050.
[37]Byeon HJ, Le QT, Lee S, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors [J]. J Cont Rel, 2016, 225: 301-313.
[38]郝和群. 具有肿瘤靶向功能的阿霉素/白蛋白-葡聚糖纳米粒子[D]. 复旦大学, 2013.
[39]Qi WW, Yu HY, Guo J, et al. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy [J]. Mol Pharm, 2015, 12(3): 675-683.
[40]Li C, Zhang D, Guo H, et al. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin [J]. Int J Pharm, 2013, 448(1): 79-86.
[41]Green MR, Manikhas GM, Orlov S, et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer [J]. Ann Oncol, 2006, 17(8): 1263-1268.
[42]姬时宇, 胡毅. 白蛋白结合型紫杉醇治疗晚期原发性肝癌的效果观察[J]. 临床肝胆病杂志, 2016, 32(10): 1911-1915.
[43]Gonzalezangulo AM, Mericbernstam F, Chawla S, et al. Weekly nab-rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial [J]. Clin Cancer Res, 2013, 19(19): 5474-5484.
[44]Ueno NT, Mamounas EP. Neoadjuvant nab-paclitaxel in the treatment of breast cancer [J]. Breast Cancer Res Treat, 2016, 156(3): 427-440.
[45]Blair HA, Deeks ED. Albumin-bound paclitaxel: a review in non-small cell lung cancer [J]. Drugs, 2015, 75(17): 2017-2024.
[46]John A. ABI-008 trial in patients with hormone-refractory prostate cancer. available at: https://clinicaltrials.gov/ct2/show/NCT00477529?term=ABI-008&rank=1.html [EB/OL].
[47]Nuhad KI. ABI-008 trial in patients with metastatic breast cancer. available at: https://clinicaltrials.gov/ct2/show/NCT00531271 term=ABI-008&rank=2.html [EB/OL].
[48]Ana M, Sant P. ABI-009 trial in patients with advanced non-hematologic malignancies. available at: https://clinicaltrials.gov/ct2/show/NCT00635284?term=ABI-009&rank=1.html [EB/OL].
[49]James MK. Phase 1/2 study of ABI-009 in nonmuscle invasive bladder cancer. available at: https://clinicaltrials.gov/ct2/show/NCT02009332?term=ABI-009&rank=3.html [EB/OL].
[50]Patricia ML, John S. A phase 1 trial of ABI-011 in patients with advanced solid tumors or lymphomas. available at: https://clinicaltrials.gov/ct2/show/NCT01163071?term=ABI-011& rank=2.html [EB/OL]. |