张锴婷,陈乃涵
收稿日期:
2019-10-08
修回日期:
2019-12-20
出版日期:
2020-01-26
发布日期:
2020-02-11
作者简介:
张锴婷,女,硕士,研究方向:临床药理。
Tel: 010-85161508 Email: zhangkaitlyn33@163.com
陈乃涵,共同第一作者,女,博士,研究方向:临床药理。
Tel: 010-85167992 Email: chennaihan@hotmail.com
ZHANG Kaiting, CHEN Naihan
Received:
2019-10-08
Revised:
2019-12-20
Online:
2020-01-26
Published:
2020-02-11
摘要: 肿瘤治疗一直是药物研发的热点领域,而生物药在其中扮演了重要的角色。本文对生物药在肿瘤治疗领域的临床进展进行了综述,根据机制,将生物药分为靶向治疗和免疫治疗两大类,靶向治疗主要从单克隆抗体和抗体偶联药物两个方面展开,免疫治疗重点介绍检查点抑制剂和双特异性抗体。
中图分类号:
张锴婷,陈乃涵. 生物药在肿瘤治疗领域的临床研究进展[J]. 中国临床药理学与治疗学, doi: 10.12092/j.issn.1009-2501.2020.01.005.
ZHANG Kaiting, CHEN Naihan. Development of therapeutic biologics in cancer treatment[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, doi: 10.12092/j.issn.1009-2501.2020.01.005.
[1]Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies[J]. Nat Rev Immunol, 2010, 10(5): 345-352. [2]Mathas S, Rickers A, Bommert K, et al. Anti-CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways[J]. Cancer Res, 2000, 60(24): 7170-7176. [3]Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy[J]. Oncogene, 2000, 19(56): 6550-6565. [4]Weickhardt AJ, Price TJ, Chong G, et al. Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer[J]. J Clin Oncol, 2012, 30(13): 1505-1512. [5]Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer[J]. N Engl J Med, 2012, 366(2): 109-119. [6]Birrer MJ, Moore KN, Betella I, et al. Antibody-drug conjugate-based therapeutics: state of the science[J]. J Natl Cancer Inst, 2019, doi: 10.1093/jnci/djz035. [Epub ahead of print]. [7]Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia[J]. Clin Cancer Res, 2001, 7(6): 1490-1496. [8]Sievers EL. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse[J]. J Clin Oncol, 2001, 19(13): 3244-3254. [9]Giles FJ, Kantarjian HM, Kornblau SM, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation[J]. Cancer, 2001, 92(2): 406-413. [10]Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia[J]. Blood, 2013, 121(24): 4854-4860. [11]Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials[J]. Lancet Oncol, 2014, 15(9): 986-996. [12]Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates[J]. MAbs, 2016, 8(4): 659-671. [13]Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy[J]. Lancet Oncol, 2016, 17(6): e254-e262. [14]Chari RV. Expanding the reach of antibody-drug conjugates[J]. ACS Med Chem Lett, 2016, 7(11): 974-976. [15]Schumacher D, Hackenberger CP, Leonhardt H, et al. Current status: site-specific antibody drug conjugates[J]. J Clin Immunol, 2016, 36 Suppl 1: 100-107. [16]Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential[J]. Clin Cancer Res, 2011, 17(20): 6389-6397. [17]Singh SK, Luisi DL, Pak RH. Antibody-drug conjugates: design, formulation and physicochemical stability[J]. Pharm Res, 2015, 32(11): 3541-3571. [18]Burris HA 3rd, Rugo HS, Vukelja SJ, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy[J]. J Clin Oncol, 2011, 29(4): 398-405. [19]Martin LP, Konner JA, Moore KN, et al. Characterization of folate receptor alpha (FRalpha) expression in archival tumor and biopsy samples from relapsed epithelial ovarian cancer patients: A phase I expansion study of the FRalpha-targeting antibody-drug conjugate mirvetuximab soravtansine[J]. Gynecol Oncol, 2017, 147(2): 402-407. [20]Lambert JM, Morris CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: A review[J]. Adv Ther, 2017, 34(5): 1015-1035. [21]Perica K. Adoptive T cell immunotherapy for cancer[J]. Rambam Maimonides Med J, 2015, 6(1): e0004. [22]Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer[J]. Science, 2015, 348(6230): 62-68. [23]Marshall HT, Djamgoz MBA. Immuno-oncology: emerging targets and combination therapies[J]. Front Oncol, 2018, 8: 315. [24]Davda J, Declerck P, Hu-Lieskovan S, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics[J]. J Immunother Cancer, 2019, 7(1): 105. [25]Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. [26]Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma[J]. N Engl J Med, 2011, 364(26): 2517-2526. [27]Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy[J]. Lancet Oncol, 2016, 17(12): e542-e551. [28]Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639. [29]Garon EB. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(21): 2018-2028. [30]Larkin J. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(1): 23-34. [31]Cheng W, Fu D, Xu F, et al. Unwrapping the genomic characteristics of urothelial bladder cancer and successes with immune checkpoint blockade therapy[J]. Oncogenesis, 2018, 7(1): 2. [32]Darvin P, Toor SM, Sasidharan Nair V, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers[J]. Exp Mol Med, 2018, 50(12): 165. [33]Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330. [34]Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance[J]. J Cell Sci, 2012, 125(Pt 23): 5591-5596. [35]Tang H, Qiao J, Fu YX. Immunotherapy and tumor microenvironment[J]. Cancer Lett, 2016, 370(1): 85-90. [36]Hasmim M, Messai Y, Ziani L, et al. Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress[J]. Front Immunol, 2015, 6: 482. [37]Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection[J]. Microvasc Res, 1989, 37(1): 77-104. [38]Couzin-Frankel J. Autoimmune diseases surface after cancer treatment[J]. Science, 2017, 358(6365): 852. [39]Day D, Hansen AR. Immune-related adverse events associated with immune checkpoint inhibitors[J]. BioDrugs, 2016, 30(6): 571-584. [40]Joshi MN, Whitelaw BC, Palomar MT, et al. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: clinical review[J]. Clin Endocrinol (Oxf), 2016, 85(3): 331-339. [44]O'Day SJ. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study[J]. Ann Oncol, 2010, 21(8): 1712-1717. [42]Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer[J]. N Engl J Med, 2005, 353(25): 2654-2666. [43]De Angulo G. Absolute lymphocyte count is a novel prognostic indicator in ALL and AML: implications for risk stratification and future studies[J]. Cancer, 2008, 112(2): 407-415. [44]Simeone E, Gentilcore G, Giannarelli D, et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma[J]. Cancer Immunol Immunother, 2014, 63(7): 675-683. [45]Cesano A, Warren S. Bringing the next generation of immuno-oncology biomarkers to the clinic[J]. Biomedicines, 2018. 6(1), doi: 10.3390/biomedicines6010014. [46]Teng MW, Ngiow SF, Ribas A, et al. Classifying cancers based on T-cell infiltration and PD-L1[J]. Cancer Res, 2015, 75(11): 2139-2145. [47]McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280): 1463-1469. [48]Anagnostou V, Smith KN, Forde PM, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer[J]. Cancer Discov, 2017, 7(3): 264-276. [49]Ascierto ML, Kmieciak M, Idowu MO, et al. A signature of immune function genes associated with recurrence-free survival in breast cancer patients[J]. Breast Cancer Res Treat, 2012, 131(3): 871-880. [50]Marwitz S, Scheufele S, Perner S, et al. Epigenetic modifications of the immune-checkpoint genes CTLA4 and PDCD1 in non-small cell lung cancer results in increased expression[J]. Clin Epigenetics, 2017, 9: 51. [51]Johnson DB, Peng C, Sosman JA. Nivolumab in melanoma: latest evidence and clinical potential[J]. Ther Adv Med Oncol, 2015, 7(2): 97-106. [52]Baumeister SH. Coinhibitory pathways in immunotherapy for cancer[J]. Annu Rev Immunol, 2016, 34: 539-573. [53]Khalil DN. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy[J]. Nat Rev Clin Oncol, 2016, 13(6): 394. [54]Shindo Y, Yoshimura K, Kuramasu A, et al. Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor[J]. Anticancer Res, 2015, 35(1): 129-136. [55]Sharabi AB, Tran PT, Lim M, et al. Stereotactic radiation therapy combined with immunotherapy: augmenting the role of radiation in local and systemic treatment[J]. Oncology (Williston Park), 2015, 29(5): 331-340. [56]Mazzone R, Zwergel C, Mai A, et al. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy[J]. Clin Epigenetics, 2017, 9: 59. [57]Tchekmedyian N. Propelling immunotherapy combinations into the clinic[J]. Oncology (Williston Park), 2015, 29(12): 990-1002. [58]Hughes PE, Caenepeel S, Wu LC. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer[J]. Trends Immunol, 2016, 37(7): 462-476. [59]Mouraviev V, Mariados N, Albala D, et al. The rationale for optimal combination therapy with sipuleucel-T for patients with castration-resistant prostate cancer[J]. Rev Urol, 2014, 16(3): 122-130. [60]Ali OA, Lewin SA, Dranoff G, et al. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication[J]. Cancer Immunol Res, 2016, 4(2): 95-100. [61]Nunez-Prado N. The coming of age of engineered multivalent antibodies[J]. Drug Discov Today, 2015, 20(5): 588-594. [62]Fan G. Bispecific antibodies and their applications[J]. J Hematol Oncol, 2015, 8: 130. [63]May C, Sapra P, Gerber HP. Advances in bispecific biotherapeutics for the treatment of cancer[J]. Biochem Pharmacol, 2012, 84(9): 1105-1112. [64]Suryadevara CM, Gedeon PC, Sanchez-Perez L, et al. Are BiTEs the "missing link" in cancer therapy[J]? Oncoimmunology, 2015, 4(6): e1008339. [65]Trivedi A. Clinical pharmacology and translational aspects of bispecific antibodies[J]. Clin Transl Sci, 2017, 10(3): 147-162. [66]Center for Drug Evaluation and Research.Codevelopment of two or more new investigational drugs for use in combination[EB/OL][2019-11-14]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/codevelopment-two-or-more-new-investigational-drugs-use-combination. [67]van Steeg TJ, Bergmann KR, Dimasi N, et al. The application of mathematical modelling to the design of bispecific monoclonal antibodies[J]. MAbs, 2016, 8(3): 585-592. [68]Brinkmann U, Kontermann RE. The making of bispecific antibodies[J]. MAbs, 2017, 9(2): 182-212. [69]Marvin JS, Zhu Z. Recombinant approaches to IgG-like bispecific antibodies[J]. Acta Pharmacol Sin, 2005, 26(6): 649-658. [70]Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer[J]. Nat Rev Cancer, 2012, 12(4): 278-287. [71]Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy[J]. Semin Immunol, 2008, 20(5): 276-285. [72]Mazor Y. Insights into the molecular basis of a bispecific antibody's target selectivity[J]. MAbs, 2015, 7(3): 461-469. [73]Kozlowski S, Woodcock J, Midthun K, et al. Developing the nation's biosimilars program[J]. N Engl J Med, 2011, 365(5): 385-388. [74]Finkelstein JB, In US. Biosimilars still await FDA decision[J]. J Natl Cancer Inst, 2006, 98(7): 435. |
[1] | 何李华, 朱秀之, 江一舟. 三阴性乳腺癌免疫治疗研究进展[J]. 中国临床药理学与治疗学, 2023, 28(8): 842-853. |
[2] | 张胡云龙, 朱秀之, 金 希, 邵志敏. 腔面型乳腺癌内分泌治疗耐药的机制与治疗进展[J]. 中国临床药理学与治疗学, 2023, 28(8): 854-865. |
[3] | 罗师萍, 张 捷, 俞育帅, 宋传贵. HER2阳性乳腺癌的靶向治疗进展[J]. 中国临床药理学与治疗学, 2023, 28(8): 876-886. |
[4] | 向奕玫, 张宁宁, 黄雨昕, 曾晓华. HER2阳性乳腺癌疗效相关生物标志物研究进展[J]. 中国临床药理学与治疗学, 2023, 28(8): 887-897. |
[5] | 侯 琼, 刘 飞, 陈传荣. 免疫治疗联合抗血管生成药物+化疗在驱动基因阴性晚期非小细胞肺癌中的应用[J]. 中国临床药理学与治疗学, 2023, 28(7): 775-779. |
[6] | 陈满新, 张丙雨, 戴 敏. 冠状动脉内靶向应用重组人尿激酶原联合经皮冠状动脉成形术治疗高负荷血栓急性心肌梗死临床疗效[J]. 中国临床药理学与治疗学, 2023, 28(5): 544-549. |
[7] | 王丹, 鄢晓丽, 张渊. 幽门螺杆菌感染影响胃癌免疫治疗的研究进展[J]. 中国临床药理学与治疗学, 2023, 28(2): 228-234. |
[8] | 王琳, 李重阳, 李帅虎, 高盛涵, 徐甜, 李飞. 肺癌中致病融合基因的研究进展[J]. 中国临床药理学与治疗学, 2022, 27(8): 877-885. |
[9] | 陈文捷, 王亚兵, 陈晓琳, 任俊玲, 赵晚君, 陈斌. 碘难治性分化型甲状腺癌的最新研究进展[J]. 中国临床药理学与治疗学, 2022, 27(1): 116-120. |
[10] | 刘宸, 方梦蝶, 徐昊, 李超, 任娟, 左博文, 张衍梅. 苍术苷靶向癌蛋白BORIS抑制癌细胞增殖的作用区域[J]. 中国临床药理学与治疗学, 2021, 26(9): 1005-1013. |
[11] | 李玮, 胡佳丽, 王凯, 贺毅憬. 黑色素瘤免疫治疗的研究现状与展望[J]. 中国临床药理学与治疗学, 2021, 26(9): 1053-1064. |
[12] | 帕孜来提·亚森, 袁浩, 路红, 郑亚, 王玉平, 周永宁. 胃癌靶向治疗药物临床实验研究进展[J]. 中国临床药理学与治疗学, 2021, 26(4): 454-461. |
[13] | 谢荣容, 陈帜, 杨昱, 谢饶英, 李平平, 孙霜霜, 陈文俊. 肺鳞癌成纤维细胞生长因子受体分子改变及其治疗对策[J]. 中国临床药理学与治疗学, 2021, 26(2): 196-203. |
[14] | 赵文超, 邱艳芳, 谭嵘. 肿瘤治疗中靶向DNA损伤反应[J]. 中国临床药理学与治疗学, 2020, 25(8): 943-952. |
[15] | 赵全铭,杨洋. 晚期三阴性乳腺癌的药物治疗进展[J]. 中国临床药理学与治疗学, 2020, 25(4): 475-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||