[1]Ravelli A, Minoia F, Davì S, et al. Development and initial validation of classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis[J]. Arth Rheumatol, 2015, 75(3): 481-495.
[2]Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice[J]. J Clin Invest, 2011, 121(3): 985-997.
[3]Qin H, Holdbrooks AT, Liu Y, et al. SOCS3 deficiency promotes M1 macrophage polarization and inflammation[J]. J Immunol, 2016, 189(7): 3439-3448.
[4]Cai X, Yin Y, Li N, et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155[J]. J Mol Cell Biol, 2012, 4(5): 341-343.
[5]Ren F, Fan M, Mei J, et al. Interferon-γ and celecoxib inhibit lung-tumor growth through modulating M2/M1 macrophage ratio in the tumor microenvironment[J]. Drug Design Devel Ther, 2014, 8(default):1527.
[6]Wang Y, Lin YX, Qiao SL, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment[J]. Biomaterials, 2017, 112: 153-163.
[7]Shabo I, Stal O, Olsson H, et al. Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival[J]. Int J Cancer, 2008 123(4):780-786.
[8]Fujii N, Shomori K, Shiomi T, et al. Cancer-associated fibroblasts and CD163-positive macrophages in oral squamous cell carcinoma: their clinicopathological and prognostic significance[J]. J Oral Pathol Med, 2012, 41(6): 444-451.
[9]Capano S, Maione F, Casanovas O, et al. Zoledronic acid normalizes tumor vessels and blocks metastasis formation by skewing macrophages from a M2-to an M1-like phenotype in a mouse model of spontaneous cervical cancer[J]. Angiogenesis, 2014, 17(3): 723-724.
[10]Li R, Xing H, Lee TA, et al. Abstract A49: Tumor-associated interstitial flow promotes macrophage migration and pro-metastatic M2 phenotype in 3D ECM[J]. Cancer Res, 2017, 77(2 Supplement): A49-A49.
[11]Zheng J, Yang M, Shao J, et al. Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis.[J]. Mol Cancer, 2013, 12(1): 1-11.
[12]Yang M, Liu J, Piao C, et al. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis[J]. Cell Death Dis, 2015, 6(6): e1780.
[13]Chen W, Wang J, Jia L, et al. Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan[J]. Cell Death Dis, 2016, 7(2): e2115.
[14]Chen FY, Zhou J, Guo N, et al. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis[J]. Biochem Biophysical Res Commun, 2015, 467(4): 872-878.
[15]Furudate S, Fujimura T, Kambayashi Y, et al. Comparison of CD163+CD206+M2 macrophages in the lesional skin of bullous pemphigoid and pemphigus vulgaris: the possible pathogenesis of bullous pemphigoid[J]. Dermatology, 2014, 229(4): 369-378.
[16]Fujimura T, Kambayashi Y, Furudate S, et al. Immunomodulatory effect of bisphosphonate risedronate sodium on CD163+ Arginase 1+ M2 macrophages: the development of a possible supportive therapy for angiosarcoma[J]. Clin Develop Immunol, 2014, 2013(1): 325412.
[17]魏续福, 蒲俊良, 郭振, 等. 肿瘤相关巨噬细胞促进索拉非尼耐药肝癌细胞的增殖及侵袭和迁移[J]. 细胞与分子免疫学杂志, 2017, 33(5): 617-622.
[18]O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci U S A, 2007, 104(5): 1604-1609.
[19]Chaudhuri AA, So AY, Sinha N, et al. MicroRNA-125b potentiates macrophage activation[J]. J Immunol, 2011, 187(10): 5062-5068.
[20]赵小彬,余陈欢,夏爱晓,等. 纳米载体特异性靶向TAMs治疗肿瘤的研究进展[J]. 中国临床药理学与治疗学, 2018, 23(7): 830-835.
[21]邢 欣,李丽萍,王 鹿,等. 丙型病毒性肝炎中肝脏巨噬细胞的变化及作用[J]. 中国临床药理学与治疗学, 2017, 22(9): 1072-1076.
[22]Liu H, Xie X, Yang X, et al. Enhanced inflammatory damage by microRNA-136 targeting Klotho expression in HK-2 cells by modulating JAK/STAT pathway[J]. Die Pharmazie, 2017, 72(5): 265-272. |