Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2021, Vol. 26 ›› Issue (9): 1065-1072.doi: 10.12092/j.issn.1009-2501.2021.09.013
Previous Articles Next Articles
FAN Wenxiang 1, ZHANG JinLu 3, XU Chi 2
Received:
2021-04-12
Revised:
2021-06-28
Online:
2021-09-26
Published:
2021-09-30
CLC Number:
FAN Wenxiang, ZHANG JinLu, XU Chi. Research progress of α7 nicotinic acetylcholine receptors in central nervous system diseases[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(9): 1065-1072.
[1] | Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease[J]. Neuropeptides, 2019, 73:96-106. |
[2] | Kalkman, H O, Feuerbach D. Modulatory effects of a7 nAChRs on the immune system and its relevance for CNS disorders[J]. Cell Mol Life Sci, 2016, 73(13): 2511-2530. |
[3] | Lasala M,Corradi J,Bruzzone A, et al. A human?spe?cific, truncated α7 nicotinic receptor subunit assembles with full?length α7 and forms functional receptors with different stoichi?ometries[J]. J Biol Chem, 2018, 293(27):10707-10717. |
[4] | Fan WX, Li X, Huang LL, et al. S-oxiracetam ameliorates ischemic stroke induced neuronal apoptosis through up-regulating α7 nAChR and PI3K/Akt/GSK3β signal pathway in rats[J]. Neurochem Int, 2018, 115: 50-60. |
[5] | Wang J, Lindstrom J. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors[J]. Br J Pharmacol, 2018,175 (11): 1805-1821. |
[6] | Yang TY, Xiao T, Sun Q, et al. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials[J]. Acta Pharmaceutica Sinica B, 2017, 6: 9-20. |
[7] | Baranowska U, Wisniewska RJ. The α7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system[J]. Postepy Hig Med Dosw (Online), 2017, 71:633-648. |
[8] | Yakel J L . Nicotinic ACh Receptors in the Hippocampus: Role in Excitability and Plasticity[J]. Nicotine Tob Res, 2012, 14:1249–1257. |
[9] | Clarke PB. The fall and rise of neuronal alpha-bungarotoxin binding proteins[J].Trends Pharmacol Sci, 1992, 13(11):407-413. |
[10] | Hone AJ, Mcintosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain[J]. FEBS Lett, 2018, 592(7):1045-1062. |
[11] | Yoshikawa H. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-κB phosphorylation and nuclear factor-κB transcriptional activity through nicotinic acetylcholine receptor α7[J]. 2010, 146(1):116-123. |
[12] | Lykhmus O, Gergalova G, Koval L, et al. Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction[J]. Int J Biochem Cell B, 2014, 53:246-252. |
[13] | Hu MH, Li YQ, Zhang H, et al. Research advances in inflammatory mechanisms based on animal models of depression[J]. Med Recapitulate(医学综述), 2019, 25(12): 2294-2298. |
[14] | Copeland WE, Wolke D, Lereya ST, et al. Childhood bullying involvement predicts low-grade systemic inflammation into adulthood[J]. P Natl Acad Sci, USA, 2014, 111(21):7570-7575. |
[15] | Trottier-Duclos F, Desbeaumes Jodoin V, Fournier-Gosselin MP, et al. A 6-Year Follow-up Study of Vagus Nerve Stimulation Effect on Quality of Life in Treatment-Resistant Depression: A Pilot Study[J]. J ECT, 2018, 34(4): e58-60. |
[16] | Weinstein AA, Deuster PA, Francis JL, et al. Neurohormonal and inflammatory hyper-responsiveness to acute mental stress in depression[J]. Biol Psychol, 2010, 84(2):0-234. |
[17] | Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway[J]. Life Sci, 2007, 80:2325–2329. |
[18] | Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines[J]. Nat Rev Neurosci, 2006, 7:137-151. |
[19] | Philip NS, Carpenter LL, Tyrka AR, et al. Nicotinic acetylcho‐line receptors and depression: a review of the preclinical and clinical literature[J]. Psychopharmacology, 2010, 212: 1-12. |
[20] | Zhao J, Liu X, Chang D, et al. Low-dose ketamine improves LPS-induced depression-like behavior in rats by activating cholinergic anti-inflammatory pathways[J]. ACS Chem Neurosci, 2020, 11(5):752-762. |
[21] | Moriguchi S, Inagaki R, Yi L, et al. Nicotine rescues depressive-like behaviors via alpha7-type nicotinic acetylcholine receptor activation in CaMKIV Null mice[J]. Mol Neurobiol, 2020, 57(12):4929-4940. |
[22] | Higa KK, Grim A, Kamenski M E, et al. Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice[J]. Psychopharmacology, 2017, 234(9-10): 1573-1586. |
[23] | Doguc DK, Delibas N, Vural H, et al. Effects of chronic scopolamine administration on spatial working memory and hippocampal receptors related to learning[J]. Behav Pharmacol, 2012, 23(8): 762-770. |
[24] | Freedman R, Hall M, Adler LE, et al. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia[J]. Biol Psychiatry, 1995, 38(1): 22-33. |
[25] | Leonard S, Mexal S, Freedman R. Smoking, genetics and schizophrenia: evidence for self medication[J]. J Dual Diagn, 2007, 3(3-4):43-59. |
[26] | Zhang P, Dai WJ, Wang ZR, et al. A review of α7 nicotinic acetylcholine receptor and schizophrenia cognition[J]. Chin M ent Health J(临床精神病学), 2018, 32(4): 324-328. |
[27] | Araud T, Graw S, Berger R, et al. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of alpha7 * nAChR function[J]. Biochem Pharmacol, 2011, 82(8): 904-914. |
[28] | Sinkus ML, Lee MJ, Gault J, et al. A 2-base pair deletion polymorphism in the partial duplication of the α7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia[J]. Brain Resh, 2009, 1291:1-11. |
[29] | Giannakopoulos P, Hof PR, K?vari E, et al. Distinct patterns of neuronal loss and Alzheimer’s disease lesion distribution in elderly individuals older than 90 years[J]. J Neuropathol Exp Neurol, 1996, 55:1210–1220. |
[30] | Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer's disease[J]. Lancet, 1976, 308: 1403. |
[31] | Hoskin JL, Al-Hasan Y, Sabbagh MN. Nicotinic Acetylcholine Receptor Agonists for the Treatment of Alzheimer's Dementia: An Update[J]. Nicotine Tob Res, 2019, 21(3):370-376. |
[32] | Arias E, Alés E, Gabilan NH, et al. Galantamine prevents apoptosis induced by beta-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors[J]. Neuropharmacology, 2004, 46(1):103–114. |
[33] | Arias E, Gallego-Sandín S, Villarroya M, et al. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors[J]. J Pharmacol Exp Ther, 2005, 315(3):1346–1353. |
[34] | Carson R, Craig D, McGuinness B, et al. α7 nicotinic acetylcholine receptor gene and reduced risk of Alzheimer’s disease[J]. J Med Genet, 2008, 45(4):244-248. |
[35] | Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease[J]. Nat Clin Pract Neurol, 2006, 2(12):679–689. |
[36] | Wyss-Coray T. In?ammation in Alzheimer disease: driving force, bystander |
or benefcial response?[J]. Nat Med, 2006,12(9):1005–1015. | |
[37] | Kazuyuki T, Yoshihisa K, Mana S, et al. Galantamine-induced amyloid-{beta clearance mediated via stimulation of microglial nicotinic acetylcholine receptors[J]. J Biol Chem, 2011, 285(51):40180-40191. |
[38] | Campbell IL. Cytokine-mediated in?ammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS[J]. Brain Res Rev, 2005, 48(2):166–177. |
[39] | Egea J, Buendia I, Parada E, et al. Antiin?ammatory role of microglial alpha7 nAChRs and its role in neuroprotection[J]. Biochem Pharmacol, 2015, 97(4):463–472. |
[40] | Godyn, J, Jonczyk, J, Panek, D, et al. Therapeutic strategies for Alzheimer's disease in clinical trials[J]. Pharmacol Rep, 2016, 68:127–138. |
[41] | Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's diseases[J]. Neuropeptides, 2019, 73:96-106. |
[42] | Shimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET[J]. Neurology, 2009, 73(4):273-278. |
[43] | Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study[J]. Arch Neurol, 2003, 60(12):1745-1748. |
[44] | Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease[J]. N Engl J Med, 2004, 351(24):2509-2518. |
[45] | Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: Risk factors and prevention[J]. Lancet Neurol, 2016, 15(12):1257–1272. |
[46] | Gallo V, Vineis P, Cancellieri M, et al. Exploring causality of the association between smoking and Parkinson’s disease[J]. Int J Epidemiol, 2018, 48(3):912-925. |
[47] | Ma C, Liu Y, Neumann S, et al. Nicotine from cigarette smoking and diet and Parkinson disease: A review[J]. Transl Neurodegener,2017, 6:18. |
[48] | Stuckenholz V, Bacher M, Balzer-Geldsetzer M, et al. The alpha 7 nAChR Agonist PNU-282987 Reduces Inflammation and MPTP-Induced Nigral Dopaminergic Cell Loss in Mice[J]. J Parkinsons Dis, 2013, 3(2):161-172. |
[49] | Suzuki S, Kawamata J, Matsushita T, et al. 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride protects against 6-hydroxydopamine-induced parkinsonian neurodegeneration through α7 nicotinic acetylcholine receptor stimulation in rats[J]. J Neurosci Res, 2013, 91(3):462-471. |
[50] | Steven V, Laura FF, Claire T, et al. Neuroprotective and anti-inflammatory effects of a therapy combining agonists of nicotinic α7 and σ1 receptors in a rat model of Parkinson's disease[J]. Neural Regen Res, 2021, 16(6):1099-1104. |
[51] | Liu Y, Zeng X, Hui Y, et al. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: Implications for Parkinson’s disease[J]. Neuropharmacology, 2015, 91:87-96. |
[52] | Fan WX. Research progress on the mechanism of ischemic stroke[J]. J China Pharm Univ(中国药科大学学报), 2018, 49(6): 751-759. |
[53] | Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of t regulatory cells[J]. Immunology, 2006, 117, 433-442. |
[54] | Paul RK, Devin MB, William BR, et al. α7 nicotinic acetylcholine receptor stimulation attenuates neuroinflammation through JAK2-STAT3 activation in murine models of intracerebral hemorrhage[J]. Biomed Res Int, 2017, 1-14 |
[55] | Han ZY, Shen FX, He Y, et al. Correction: Activation of α-7 Nicotinic Acetylcholine Receptor Reduces Ischemic Stroke Injury Through Reduction of Pro-Inflammatory Macrophages and Oxidative Stress[J]. PLoS One, 2016, 11(3):e0152218. |
[56] | Ikuya K, Shinya D, Fuyuko T, et al. Activation of the α7 Nicotinic Acetylcholine Receptor Upregulates Blood-Brain Barrier Function Through Increased claudin-5 and Occludin Expression in Rat Brain Endothelial Cells[J]. Neurosci Lett, 2019, 694:9-13. |
[57] | Zou DQ, Luo M, Han ZY, et al. Activation of Alpha-7 Nicotinic Acetylcholine Receptor Reduces Brain Edema in Mice With Ischemic Stroke and Bone Fracture[J]. Mol Neurobiol, 2017, 54(10):8278-8286. |
[58] | Li ZR, Shen L. Research progress in function of α7 nicotinic acetylcholine receptor on microglia andits related diseases[J]. Med Recapitulate(医学综述), 2019, 25(22): 4374-4378. |
[59] | Parada E, Egea J, Buendia I, et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme-oxygenase-1 via nuclear factor erythroid-2-related factor 2[J]. Antioxid Redox Signal, 2013, 19 (11): 1135-1148. |
[60] | Li XM, Fan WX. Effects of PNU-282987 on neuronal apoptosis and learning and memory ability after cerebral ischemia-reperfusion in rats[J]. J China Pharm Univ(中国药科大学学报), 2020, 51(2): 193-197. |
[61] | Yuan M, Zhang XX, Fu XC, et al. Enriched environment alleviates post-stroke cognitive impairment through enhancing alpha7-nAChR expression in rats[J]. Arq Neuropsiquiatr, 2020, 78(10):603-610. |
[62] | Neumann S, Shields NJ, Balle T, et al. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective[J]. Int J Mol Sci, 2015, 16(12): 29029-29046. |
[1] | WANG Kun, XU Peipei, ZHOU Lanlan, LU Sheng. Mechanism of neuroprotective effect of ginsenoside Rg1 regulating Epac1/Rap1 signaling pathway in rats with ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 721-727. |
[2] | LI Qinghua, ZHAO Yan, ZHAO Haigang, GAO Pengfei, XU Bingxin. Value of ABCB1 G2677T gene polymorphism detection in lipid-lowering therapy with atorvastatin in patients suffered from ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(6): 633-640. |
[3] | QIN Wenxiu, XU Junfeng, YANG Ting, WANG Pingfei. Research progress on signaling pathway of tanshinoneIIA in treatment of nerve injury after ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(6): 705-713. |
[4] | FU Hong, TIAN Lei. Individualized precision therapy for patients with ischemic stroke and hypertension [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 870-876. |
[5] | LIANG Meifang, CHEN Qingzhuang, YANG Peiqun, WANG Yong. Efficacy and safety of generic and branded atorvastatin in patients with ischemic stroke/transient ischemic attack: A real-world study [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 785-792. |
[6] | XIA Chunyong, ZHANG Zuowen, HE Xiaoyan, LIU Jie, LI Xiaoya, CHANG Qiuhong, QIN Lijuan, CAO Zhenming, DING Ling. Correlation between CYP2C19 gene polymorphism and individualized medication in patients with ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(3): 318-323. |
[7] | CHEN Zuoqian, LIN Guoshi, DAI Xuejun, WANG Mengying, CHEN Binghong, YANG Jian, QIU Yongming, LIN Ruisheng. Protective effects of α-ketoglutarate dehydrogenase complex in adaptive reperfusion following ischemia stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(9): 961-967. |
[8] | ZHAO Hailing, ZHANG Haojun, ZHAO Tingting, YAN Meihua, DONG Xi, MA Liang, LI Ping. Association between the polymorphism of PNPLA2 gene and the risk of ischemic stroke in type 2 diabetic patients in Chinese Han Population [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(6): 664-669. |
[9] | YUAN Xiaolong, SUN Hua, WANG Zhongfang, CHEN Yajuan, ZHOU Lulu, YIN Qin, XU Jinying. Distributions of MTHFR C677T gene polymorphism among cerebral stroke patients in southern Anhui province [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(3): 312-316. |
[10] | CHEN Yanbin, DENG Shanshan. Effect of Xingnaojing injection on the expression of hypoxia-inducible factor-1α in patients with acute cerebral infarction [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(7): 821-824. |
[11] | LIU Zhengdong, ZHENG Ning. Correlation of TMAO and Lp-PLA2 levels in patients with atherosclerotic ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(6): 684-688. |
[12] | MA Honggang,PAN Qinmei,ZHU Feifei,WANG Yaxian,WANG Zhuang. Relationship between leukotriene B4,carotid plaque and progressive ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(6): 689-693. |
[13] | CHEN Tao, YAN Yongxing, SHEN Yonghui. Application of serum B type natriuretic peptide precursor and blood pressure variability in patients with non-cardiogenic ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(5): 570-573. |
[14] | WANG Qinghua, CHU Zhaohu, XU Yesong, ZHAO Shoucai, FANG Fang, SUN Aiping. Treatment efficacy of scalp acupuncture on the score of MoCA and serum of Hcy in stroke patients with obstacles cognitive [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2017, 22(2): 165-169. |
[15] | YE Zhuang , LI Zhi-qi. Progress in umbilical cord blood transplantation for hypoxic-ischemic brain injury and ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2015, 20(4): 450-454. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||